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Cover photo: Tide table in the form of a circular diagram, taken from Guillaume Brouscon's Almanac, published in France in 1543. There are 29 segments, numbered around the perimeter. Lunar phases are shown in the next ring in. Spring tides appear as wavy lines two segments (days) after new and full moon. The times of high and low waters are shown in the next two rings in. For example, on the first and 15th days, high water is at 3 (am and pm), and low water is at 9 (am and pm). This is true for ports on the Bay of Biscay, France. Cartwright (1999) contains additional diagrams and discussion.

Preface
This handbook was primarily written to provide a reference for tidal practitioners working in national agencies. These agencies typically receive data from port tide gauges, apply quality control procedures, add the data to an existing database, run a harmonic analysis on the complete dataset, and finally to create and publish the most accurate possible set of predictions for the coming year. These processes are now largely routine. For the modern tidal practitioner, much of the fun and challenging part now comes in the form of a wide variety of requests for special information - predictions for minor ports requiring inference from more established sites, questions from fishermen wanting to know why the currents behave a certain way, and inquiries such as how to set the "lunitidal interval" on their new "tidal wristwatch" birthday present, to name a few.

Every effort has been made to demystify a topic which has an unfortunate reputation for obtuseness. Partly this stems from its long traditions, both nautical and astronomical, that combine the lexicon of those salty dogs sailing the seven seas of yore, with the arcane symbols and signs of the star-gazers and astromancers whose celestial dreams guided our forefathers since the days of the old Babylonians. (More on these traditions may be found in Cartwright's book, "Tides, a Scientific History", see the Bibliography). The topic is also based on physical science, with its own mathematical language, which inevitably assumes a knowledge of university-level physics and calculus. A special effort has been made to use a consistent and logical set of symbols and to explain how the more traditional symbols relate to them. Someday, perhaps, we will have a common set of symbols, definitions for tidal constituents, methodology for inference, naming conventions, etc., and it is hoped that the handbook will provide a step in that direction.

Much of the tidal reference material is of print and difficult to obtain, especially for people working outside major industrialised countries. Another motivation for the handbook, which was written with internet access as a basic goal, was to help overcome this difficulty. The internet is also expected to play a role in providing a two-way street between author and user, bringing feedback and leading to timely updates to the content. 

As this is an Australian handbook, most of the examples are drawn from the Australia - Pacific region. However, it is not meant to be geographically limited or even focused. For more information on the region, a section introducing the tides of the Australian coast, written by Emeritus Professor Geof Lennon, may be found in Laughlin (1997), and a more academic review of the tides of Australia can be found in Easton (1970). 

Seaside dwellers, observing the alternating encroachment and retreat of the sea, have used the tide as a metaphor in countless poems and metaphors. Here is an extract from a poem written by Henry Wadsworth Longfellow: 

The little waves, with their soft white hands, efface the footprints in the sands,

The day returns, but nevermore, returns the traveller to the shore;

And the tide rises, the tide falls.

Sincere thanks are extended to Emeritus Professor Geof Lennon, Professor Zygmunt Kowalik, Dr. Falconer Henry, Mr. Bill Mitchell, and Dr. Richard Ray, all of whom read sections of the draft handbook and provided useful feedback.

Chapter 1

Review of basic theory

1.1  Tidal forces
Most readers will be familiar with some of the many available books and internet sites that explain the existence of tides. This chapter briefly touches on the three usual conceptual approaches (tidal forces, tidal potential, and the Laplace equations) dwelling longest on that of the tidal potential as it is the one most relevant to the practitioner (as opposed to science students and tidal modelers). We begin with tidal forces.
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Figure 1.1 Horizontal (tractive) tidal force vectors on earth. The North Pole is at P, the moon is overhead at V, and an observer moves from A1 to A5 as the earth rotates.

Standard introductions to tides often begin with a diagram similar to Figure 1.1. It is based on a figure in Darwin (1898; re-issued 1962), used to illustrate the "tractive" forces (horizontal tide-generating forces at the surface of the earth), represented as arrows in the diagram. The point V marks the "sub-lunar point", the point on earth's surface where the moon is directly overhead. All the tractive force vectors on the near (sub-lunar) side of the earth point towards the sub-lunar point, while those on the far side point the opposite way. The waters of the ocean flow in response to the tractive forces, causing water to pile up at the sub-lunar point and its opposite on the far side of earth. This explains, in a general way, why the primary tidal effect of the moon is to cause a double bulge of water on either side of the earth. 

Darwin then considers an observer on earth at the latitude of London. As the earth rotates he moves from A1 to A2 and so on to A5. Notice that the tractive force experienced by the observer changes with time as a result of the earth's rotation. Of the points labeled, it is strongest at A3, zero at A4 (at moonset), and points away from the moon on the "far" side (e.g. at A5).

The directions of the tractive forces on the earth on the side opposite the moon are explained by some authors (including Darwin) in terms of a balance between gravitational and centrifugal forces. However, there is little to be gained from this explanation in terms of understanding tides, and it becomes redundant once the tide-generating potential is understood, so we will not repeat his explanation in detail. Suffice it to say that the tractive forces arise from the distribution of lunar gravitational forces over the surface of the earth, which are in balance with orbital centripetal forces where the tractive vectors are zero (e.g. at A4) and out of balance everywhere else. 

The foregoing description of the tractive forces applies equally to the earth-sun system. Although we normally think of the earth in orbit around the sun, and the moon in orbit around the earth, in fact in both cases the two bodies are in orbit around their common centre of mass. The centre of mass of the earth-sun pair is close to the centre of mass of the sun. The centre of mass of the earth-moon pair is about a quarter of the way inside the earth. 

1.2  The tide-generating potential
Early in the past century the trailblazing A.T. Doodson (1921) traced a logical path from fundamental physical principles through to the frequencies of the major harmonics. He began by taking one step back from the vector force field, to the scalar field known as the gravitational potential. (What is the difference between a scalar and a vector field? Sea level is a scalar field; ocean currents form a vector field. A scalar field has a single magnitude, like the tide height, or ocean temperature, while a vector field has, at each point, both magnitude and direction).

The gravitational potential is defined such that its gradient (or, more commonly, negative gradient) is the gravitational force field. Being a scalar quantity, the potential at any point is a simple sum of those arising from the masses of earth, sun, and moon, and we move to a geocentric reference frame in which the orbital centripetal acceleration thankfully disappears. The gravitational potential is equal to the potential energy per unit mass and has units L2/T2 (L and T representing length and time).  By appropriate choice of coordinates, an expansion of the "potential" of the earth-moon (or earth-sun) gravitational fields yields a set of astronomical amplitudes, frequencies, and phases. This expansion forms the basis of the standard tidal harmonic analysis.
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Figure 1.2  Diagram showing vectors 
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 and 
[image: image6.wmf]a

r

 whose origins are at the centre of the earth (C) and whose respective endpoints are at the centre of the moon or sun and at point A on surface of the earth.

An expansion of the potential at a point on the earth's surface into a sum of Legendre polynomials is a standard exercise for first- or second-year physics students. It is not essential to repeat all the details here, but for those who have some knowledge of calculus it may be of interest, and it is instructive inasmuch as gradients of successive terms yield the components of the forcing (vector) field. Using the moon as an example, the expansion usually proceeds as follows (the procedure for the sun is virtually identical). The lunar tidal potential at a point anywhere on the surface of the earth (with no other restrictions being made as to location) is written 


[image: image7.wmf]m

m

m

r

a

GM

r

r

-

-

=

F


where G is the gravitational constant, Mm is the mass of the moon, and 
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 are vectors of length r and a (Figure 1.2). The vector 
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 has its origin at the centre of the earth and endpoint at the centre of the moon, while 
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 has the same origin but is directed to a point A on the surface of the earth. Invoking the binomial theorem, m is then expanded into the Legendre polynomials, denoted Pn(cos m ), wherem  is the angle between 
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. Omitting terms which do not contribute to the tides, or are negligible, we have:

m = 
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where

P2(cos m ) = ½ (2 cos2 m- 1), and P3(cos m ) = ½ (5 cos3 m- 3 cos m). 

The expression for the solar tidal potential, s, is identical except that Mm (the mass of the moon) is replaced by Ms (the mass of the sun), mbys and 
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, pointing to the centre of the sun.

Should one care to, one could now take the gradient of the potential and, with appropriate approximations, derive all the relations (e.g., the inverse-cube relationship) that are usually derived from consideration of the balance of gravitational and centripetal forces.

As the earth undergoes its daily rotation, while orbiting the sun, and the moon orbits the earth, m and s change continuously due to changes in mandswhichoscillate within fixed ranges). In our choice of reference frame, 
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 (the vector pointing from the centre of the earth to the centre of the moon or sun) remains constant in direction over the course of a day, and virtually constant in magnitude, while 
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 (the vector from the centre of the earth to a point on earth's surface) remains identically constant in magnitude, but its changes in direction produce changes in 
Expressions similar to those above can be found in many texts, eg. Godin (1972).  However, the angle  in the argument of the polynomial does not make a convenient basis for further analysis. It is necessary to re-express the potential in terms of known astronomical frequencies and periods, whose relevant angles are defined on the "celestial sphere" (Chapter 6). As far as the tide-generating potential is concerned, this is the point of departure between the conventional harmonic method and the so-called "response method". With the harmonic method, the next step is to express the potential as a sum of sines and cosines in the general form
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where the k 's are amplitude constants (Doodson referred to them as "geodetic coefficients") arising from the Legendre polynomials, and the time dependence is contained in Vk(t) (each term having a characteristic frequency and phase). Doodson carried out the expansion to a large number of terms, tabulating 390 of them in a series of "schedules". 

Each term in Doodson's expansion can be expressed as a sinusoidal signal having a unique frequency and phase. These are known as the tidal constituents, and form the basis of tidal harmonic analysis and prediction, although not all 390 are required as the tidal potential corresponding to a majority of them is negligible. About 100 of them are important enough to have been given names (M2, S2, etc.). The naming convention is described in § 2.2.

1.3  The equilibrium tide
The equilibrium tide is usually defined in terms of a hypothetical ocean: if the earth was completely covered by an ocean of sufficient uniform depth, which responded instantly to the time-varying gravitational forces (ie. no friction or inertia), the sea level would conform to the shape of a hypothetical envelope. The forces, and hence the hypothetical tide, vary in clock-like fashion due to the spinning of the earth, the orbit of the moon around the earth, and the orbit of the earth around the sun. Although the real ocean is very different from the hypothetical one, the frequencies of virtually all of the tidal constituents are identical to some linear combination of six or less astronomical frequencies (§ 2.4). 

In a very real sense, the equilibrium tide is synonymous with the "tide-generating potential". The choice of terms is a matter of personal preference. Thus, the equilibrium tide may be said to provide not only a useful conceptual model, but also a set of reference signals for tidal analysis. The equilibrium amplitudes and phases may also be used for inference (§ 5.5) of constituents when the data set is too short to separate closely-spaced frequencies. Finally, the hydrodynamic equations of tidal motion may be formulated to contain the equilibrium tide as a forcing term.

1.4  The tidal equations of Laplace
There is an entirely different approach to the study of tides in which the tide-generating potential also plays an essential role - by the solution of the equations of hydrodynamics. This approach was pioneered in the 18th century, particularly by Laplace (1776). Laplace included a tidal potential term in the equations of fluid motion, and proceeded to solve them in terms of an expansion of sinusoidal terms – including our familiar diurnal and semi-diurnal frequencies. Laplace was restricted to solutions on a deep, water-covered, earth rather like the equilibrium situation, but included friction and earth rotation. Many refinements on his work have since occurred, most notably with the advent of modern computers and numerical techniques, which allowed solutions to be found on an earth with ocean basins of realistic depth, and most recently, satellite altimetry, which provides data enabling the ocean models to become more accurate.

The Laplace Tidal Equation, in modern form, with terms representing the tidal potential or equilibrium tide (eq), Self-Attraction and Loading (SAL; Chapter 6), and frictional dissipation (
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The sea level anomaly is , g is gravitational acceleration, and 
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 are velocity and earth rotation vectors, respectively. The equilibrium tide is a known function of time and geographic position. Modern numerical models solve the LTE for time series of sea level, , at each point on the numerical grid, and then use standard tidal analysis on the time series to estimate the tidal constituents. Compound tides that do not enter as part of the equilibrium tide forcing may be generated by the model.

In the above equation the tidal forcing takes the form of time-dependent body forces, or more exactly, the horizontal gradients of the difference between the water elevation and the elevation of the equilibrium tide. However, for a limited region (for example, the North Sea), tides may be specified as an open boundary condition rather than a body force.  

Chapter 2

Tidal specification

2.1 Amplitude, frequency, and phase
We begin with a representation of a time-varying cosine wave as A cos(t - φ), where the factor A is the amplitude (half the total range of variation), the frequency (e.g., radians per second, often written "s-1" with the radians implied), and φ is a phase shift (φ > 0).  Frequency is defined as  = 2π/T, where T is the period of oscillation. It may also be thought of as the time rate of change of phase. The negative sign A cos(t - φ) means:

• φ is the phase elapsed as measured from t = 0 to the first maximum in the direction of increasing time, and

• hence φ will be called "phase lag" to distinguish it from phase measured in the direction of decreasing time.

	Figure 2.1  Graph of the curve A cos(t - φ), with amplitude A = 2, period T = 2.6 seconds, and frequency  = 2.42 s-1. The first maximum is at t = 2.15 seconds.
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In Figure 2.1, the phase lag is calculated as follows. The time elapsed to the first maximum (call this te) is 2.15 seconds. We used the fact that frequency is the time rate of change of phase, so that • te is equal to the phase lag. Thus φ= 2.42 • 2.15 = 5.2 radians or 298.1°, and we may write the curve as "2 cos(2.42 t - 298.1º)". Although the same curve could also be written "2 cos(2.42 t + 61.9º)", this is not the usual convention in tidal practice, which is to use phase lag (with the negative sign) rather than phase.

Another important convention in tidal practice is to use "speed", in degrees per hour, and usually designated , in place of frequency. We will write the speed of the nth tidal constituent as "n", although other notations are also used (§ 2.4). 

Phase, or phase lag, is a frequent source of confusion, though it need not be if properly defined. Modern tide tables, such as the Australian National Tide Tables (ANTT) and Admiralty Tide Tables, list phase lags for a limited number of tidal constituents. The phase lag for the nth constituent is gn. Each is referenced to a unique known reference signal of the same frequency (Figure 2.2). The phase of the nth reference signal, designated Vn(t0) (sometimes called the “equilibrium phase” for the nth constituent, as they are based on the relevant astronomical phases), can be calculated for any given date within a century or two of the present time using the "longitude formulas" (§ 2.6). (The use of "t0" rather than "t" is a reminder that the formulas evaluate the phase at a discrete time - 0000 hours UT on the date specified to the longitude formula).  
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	Figure 2.2   Two signals of precisely the same frequency maintain a constant phase relationship. The phase lag gn is the phase elapsed between a peak in the reference signal and the preceding peak in the observed signal. Vn(t0) is the phase of the reference signal at 0000 hours UT of a date specified to the longitude formula.


It is advisable to work entirely in UT for analysis and prediction. This means converting the data to UT prior to analysis, using UT phase lags for the predictions, and then afterwards, to convert the predictions (which will be in UT) to local time if so required. 

The ANTT and most other tide tables list gn(LT), ie phase lag in local time. To convert these to UT,  use

gn(UT) = gn(LT) - n • h, where

n is the speed of the constituent in (/hour, and

h is the difference in hours between the local time zone and UT (positive for time zones east of Greenwich, negative for time zones west of Greenwich).
For example, a LT phase lag of 79.6( for the tidal constituent "O1" at Sydney, Australia (10 hours east of Greenwich)  is equivalent to 79.6( - 13.94(/hour • 10 hours = 300.2( in UT (since the result was negative, 360( was added).

Older texts on ocean tides, and modern texts on earth tides, may refer to phase in the (kappa) notation. This convention places not only the tidal phase lag, but also the reference signal in the local time zone. A phase lag given as n at longitude L can be converted to gn(UT) by the formula: gn = n + iaL, where ia is the species (see § 2.2 and Chapter 6) and L is positive (negative) for longitudes west (east) of Greenwich. See also Doodson (1928), page 264, and the NOAA tidal glossary (NOS, 1989). Note that for any given site, the conversion term, iaL, is the same for all tidal constituents of a given species - thus, for example, 70º is added to all diurnal constituents (ia = 1) at 70ºW to convert them from phase to g phase.

2.2  The Names: M2 , S2 , etc.
The names of tidal constituents (M2, K1, etc.) originated with Sir William Thomson (Lord Kelvin) and Sir George Darwin in the 19th century. Cartwright (1999), pp. 100-103, provided an interesting account of how the convention developed. Aside from "S" for solar and "M" for moon (lunar), the rationale for the letters is not obvious. The subscript specifies the "species" (frequency band): 0 for long-period tides, 1 for diurnal, 2 for semi-diurnal (twice-daily), etc. 

The names of the compound constituents, described in Rossiter and Lennon (1968) includes the more basic constituents from which they arise. A few examples shows the logic behind them. While the names are suggestive of the origins, they don't always identify them completely.

• 2MS6, which oscillates six times per day, arises from M2 and S2. The speed is determined as 2σM2 + σS2, that is, twice the speed of M2 plus the speed of S2. 

• 2MQ3 arises from M2 and Q1 and the speed is given by 2σM2 + σQ1. 2MQ3 is a bit unusual because most compound tides involve only constituents of the same species (i.e., all diurnal or all semi-diurnal).

• 2(MN)S6 arises from M2, N2, and S2 and the speed is given by 2σM2 + 2σN2 - σS2. Note that the sign can be negative, and that the parenthesis indicates that M2 and N2 have the same sign. The only way for the speeds to add up to six is to have factors of positive two on M2 and N2, and a factor of negative one on S2. Thus, 2•2 + 2•2 - 2 = 6.
2.3  The Doodson Number
Although the harmonics in the tide-generating potential could be characterised by amplitude, frequency and phase explicitly, the convention devised by A.T. Doodson last century has been widely adopted and has stood the test of time for versatility. The "Doodson Number", as it has come to be called, is a set of six small integers which, in combination with basic astronomical data, specify the speed and phase (phase at hour zero of a given day) for each constituent, as well as the astronomical ingredients that determine them. 

The Doodson Number was originally written NNN.NNN where each N was an integer in the range 0 - 9 (or "X" for ten). In some tabulations five was added to each integer (except the first) to avoid negative values. This practice is no longer of much value, so we will write the Doodson Number simply as (ia, ib, ic, id, ie, if), with i ranging between -12 and +12. 

The second and third digits (ib and ic) of the Doodson Number take on different values, depending on whether the first digit is based on solar or lunar days, and this may not always be spelled out. For example, the Doodson Number for M2 is written (2 0 0 0 0 0) or (2 –2 2 0 0 0)*. The first one tells us that the constituent oscillates twice per lunar day, as one expects for M2. The latter tells us that the same constituent oscillates twice per solar day, less twice per month, plus twice per tropical year, which of course must  come to the same thing. Given a Doodson Number of (2 0 0 0 0 0), there is no way to know if it is M2 or S2, unless we are told whether the "2" refers to "twice per lunar day" or "twice per solar day". Obviously the time base must always be clearly specified. Conversion of the Doodson Number from one time base to the other is quite simple (§ 2.4).

*In a table that adds five to all digits except the first, the representation of M2 is either (2 5 5 5 5 5) or (2 3 7 5 5 5)

2.4  Astronomical periods and tidal speeds
The convenience of the Doodson Number is partly due to the fact that the six digits can be thought of as the coefficients on the basic astronomical periods that determine the make-up of the tidal constituent. The periods include the mean solar hour (msh), the mean lunar hour,

• the sidereal month (Ts), 27.3217 mean solar days,

• the tropical year (Th), 365.2422 mean solar days,

• the moon's perigeal cycle (Tp), 8.847 years

• the moon's nodal cycle (TN), 18.613 years,

• the sun's perihelion cycle (Tp'),  20,940 years.

The "year" in the definitions of Tp, TN, and Tp' is the Julian year (1 Julian Year = 365.25 days). Although the longitude of the perihelion changes by less than .02( per year, this is enough to cause a noticeable effect in the speeds of certain constituents, and that is why it must be retained. Definitions of the nodal and perigeal cycles may be found in Chapter 6.

The letters s, h, p, N and p' (or p1) are well-established in the tidal literature, but unfortunately usage varies. Most commonly, they represent the longitude (on the celestial sphere) of the variable whose period we call Ts, Tp, etc. In other words,  many authors use s for the longitude of the moon, p for the longitude of the moon's perigee, and so on (i.e., continuously-varying functions of time). Elsewhere they may be "understood" to mean the (constant) time rate of change of those longitudes, in which case the meaning is clear only if the dot notation is used (as in "
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"), but unfortunately the dot is frequently omitted. For this reason, unless clearly understood from the context, we recommend using s, h, p, N, and p' only as subscripts. We will use subscript t and τ on the Greek letter  to indicate mean solar days and mean lunar days respectively. 

The speeds corresponding to the mean solar and lunar day will be denoted t and 
• t= 15.0(/msh, equivalent to 2π/(mean solar day), and

• = 14.4920521(/msh, equivalent to 2π/(mean lunar day).

The speeds corresponding to the longer astronomical periods are:

• s =  5.490165 x 10-1 (/msh (equivalent to 2π/Ts),

• h = 4.106863 x 10-2 (/msh (equivalent to 2π/Th),

• p = 4.641878 x 10-3 (/msh (equivalent to 2π/Tp),

• N =  2.206413 x 10-3 (/msh (equivalent to 2π/TN), and

• p' =  1.96125 x 10-6 (/msh (equivalent to 2π/Tp').

Given a Doodson Number (ia, ib, ic, id, ie, if), the speed of constituent "n" can be found from one of the two following formulas:

• n = iat + ibs +ich + idp + ieN + ifp', or

• n = ia + ibs +ich + idp + ieN + ifp'. 

The first formula must be used if the Doodson Number is based on the solar day, and the second formula used if it is based on lunar day (§ 2.3). For tidal predictions, solar time (and hence t) is normally required. Given a table of lunar day-based Doodson Numbers, the following formulas may be used to convert to solar time, depending on whether the constituent is diurnal, semi-diurnal, etc..  

• Diurnal (ia = 1):  ib(solar) = ib(lunar) – 1, and ic(solar) = ic(lunar) + 1, 

• Semi-diurnal (ia = 2): ib(solar) = ib(lunar) – 2, and ic(solar) = ic(lunar) + 2,

• Ter-diurnal (ia = 3): ib(solar) = ib(lunar) – 3, and ic(solar) = ic(lunar) + 3, 

• …and so forth for higher frequency constituents. Note that only ib and ic differ.
For example, to compute the speed of S2, with solar day Doodson Number (2 0 0 0 0 0), and lunar day Doodson Number (2 2 -2 0 0 0), we have:

• S2 = 2t = 30(/msh, or 

• S2 = 2( + 2s - 2h = 30(/msh. 

In § 2.3, mention was made of the fact that the letters t, (, s, h, p, N, and p', are themselves sometimes used to represent speed, as in:

• speed of S2  = 2t,  or 

• speed of S2  = 2( + 2s - 2h. 

Some authors would add a "dot" above t, (, s, h, p, N, and p' in the preceding expressions to show that a time rate of change is implied. 

Similarly, the tidal literature carries frequent reference to expressions such as  "2S2 – K2". S2 and K2 in this case are shorthand for what we have called S2  and K2, and we would write  2S2 - K2. The tidal constituent with this speed (2S2 - K2) can be worked out from the Doodson Numbers. Using lunar days, S2  and K2 are expanded as: 

S2 = 2 + 2s - 2h , and 

K2 =  + 2s , so that

2S2 - K2 = 2(2 + 2s - 2h) – ( + 2s) = + 2s - 4h , indicating a constituent with lunar day Doodson Number (2 2 -4 0 0 0). Referring to Table 7.1, we see this would be 2SK2. Had solar times been used for S2 and K2, the result would have been t- 2h , and the solar day Doodson Number (2 0 –2 0 0 0) also, of course, corresponds to 2SK2  .

2.5  Time scales
In tidal prediction one of the terms which must be calculated is the reference phase, Vn(t0). Vn(t0) is computed as a function of the number days elapsed between an “epoch” (e.g. 0000 hours UT on 1 January 1900) and the start of a day on which predictions are required. UT, or Universal Time, was the basis for the formulas of Doodson (1921) and Schureman (1976), while ET, or Ephemeris Time, was the basis for the formulas of Cartwright and Tayler (1971). At the start of the 1900’s, the two time scales coincided. At the present time, however, they differ by about one minute. Estimates of Vn(t0) for a particular time in the present, using the two formulas, differ by an equivalent amount in degrees, depending on the speed of the constituent. 

All of the above formulas are still in use at different institutions, and for most practical tide predictions the differences are negligible. However, Cartwright (1985) argues that compelling reasons exist for adopting new formulas which were published in  the USA/UK Astronomical Almanac for 1984. These new formulas are based on the “TDT” time scale. TDT, which stands for Terrestrial Daylight Time, differs from UT by a varying amount, whose value can also be found in the almanac. The new formulas are also based on a more recent epoch: 1200 hours TDT on 31 December, 1999. (Note that where reference is found to GMT (Greenwich Mean Time), or Z (Zulu time), one can safely substitute in the term “UT”, which is essentially synonymous.)

2.6  Longitude formulas 

In § 2.1 we defined Vn(t0) as the phase of a reference signal for the nth tidal constituent at 0000 hours UT of any arbitrary given date. Vn(t0), is computed as part of routine tidal prediction. We may write:

• Vn(t) = iat + ibs(t) + ich(t) + idp(t) + ieN(t) + ifp'(t) + n , or

• Vn(t0) = ibs(t) + ich(t) + idp(t) + ieN(t) + ifp'(t) + n ,

where t is the hour angle of the sun, which is zero at 0000 hours UT. The terms ib, ic, etc., are the coefficients of the constituent's Doodson Number, which must be a solar (rather than lunar) day-based since the start of the day, at hour 0000, is a solar time. The remaining terms are:

• s(t), or simply "s":  mean longitude of moon, 

• h(t), or "h":  mean longitude of sun, 

• p(t), or "p": longitude of lunar perigee, 

• N(t), or "N": longitude of lunar ascending node, 

• p'(t), "p' ", or "p1": longitude of perihelion, and

• n :  phase constant (a multiple of 90(). 

The phase constant is tabulated in many (but not all) tables of Doodson Number. 

Algebraic formulas for the relevant astronomical longitudes (on the celestial sphere), s(t), h(t), p(t), N(t), and p'(t) (or s, h, p, N, p') are given in a number of sources, including Cartwright (1982), Doodson (1921), Franco (1988), Schureman (1941) and the tidal package TASK-2000 (IOS, UK), and may be easily programmed. Two of these are given below, starting with Cartwright’s.

Cartwright's formula is based on an "epoch" of 1200 hours ET, 31 December 1899. Let d be the number of calendar days counted from the epoch, and T=d/36525. (A subroutine known as “zeller.for” is widely available for counting day numbers.) Noon on 1 January 1900 would be d = 1. Units are "revolutions", so must be multiplied by 360 to convert to degrees, for example. (The modulus would of course also be taken, eg. 2765.4( is equivalent to 245.4(.) Then:

• s(t) = 0.751206 + 1336.855231*T - 0.000003*T2 

• h(t) = 0.776935 + 100.002136*T + 0.000001*T2

• p(t) = 0.928693 + 11.302872*T - 0.000029*T2

• N(t) = 0.719954 - 5.372617*T + 0.000006*T2

• p'(t) = 0.781169 + 0.004775*T + 0.000001*T2

Phase increases linearly in time aside from a small quadratic factor which accounts for small secular trends in the speeds.

TASK-2000 is based on an epoch of 0000 hours UT, 1 January 1900. The formula is said to be accurate for at least the period 1800-2100:

• s(t) = 277.0247 + 129.38481 • IY + 13.17639 • DL

• h(t) = 280.1895 - 0.23872 • IY + 0.98565 • DL

• p(t) = 334.3853 + 40.66249 • IY + 0.11140 • DL

• N(t) = 259.1568 - 19.32818 • IY - 0.05295 • DL

• p'(t) = 281.2209 + 0.017192 • IY 

In the above, IY = year – 1900 (for example, for the year 1905, IY = 5, and for the year 1895, IY = -5), and DL = IL + IDAY – 1, where IL is the number of leap years from 1900 (which was not a leap year) up to the start of year IY. Thus, IL = (IY-1)/4 in FORTRAN, and IDAY is the day number in the year in question. For example, for 12 January 1905, DL = 12. For years less than 1900 then one can compute IL = IABS(IY)/4  and DL = -IL + IDAY - 1 in FORTRAN.

Franco's (1988) algorithms are given in terms of the Gregorian century, which may make them more convenient for dates further into the past or future. However, they carry one decimal place less on many terms than the foregoing algorithms, implying slightly less accuracy for the present time.

Chapter 3

The major tidal cycles

3.1  M2 , S2 , P1 , K1 , O1 , N2 , L2 , T2 , and R2
In Chapter 1, the basis for expecting two tides per day was described, at least inasmuch as the net forces tend to create "bulges" of high water beneath the moon (or sun) as well as on the opposite side. As the earth rotates, points on the surface pass through each of these high waters, creating the two main semi-diurnal components, M2 and S2. The lunar semi-diurnal constituent, M2, has a longer period than S2 due to the distance through which the moon travels along its orbit over the course of a solar day.  

On the basis of the preceding paragraph, one might expect to see as many as four high tides per day, but in reality, of course, there are normally only two. As explained in § 3.2, where the spring/neap cycle is discussed, the sum of two sinusoids of nearly the same frequency is a single modulated frequency.

If the earth and moon orbits were circular rather than elliptical, and in the same plane, and the earth's axis of rotation were perpendicular to that plane, the only tidal frequencies would be M2, S2, and their multiples and compounds (M6, MS4, etc.). All the other tidal frequencies arise because of the orbital ellipticities, the angle between the orbital planes, and the tilt of the earth's axis. As a consequence, they are all simple linear combinations of these fundamental astronomical frequencies, which were listed in § 2.3 as corresponding to the six astronomical speeds. Again, the associated periods are those of the day, month, year, and the three longer-period cycles (lunar perigee, lunar nodes, and solar perigee).

The tilt of the earth's axis is responsible for the diurnal harmonics P1 and K1. To understand this, consider Figure 3.1, which gives a side view of the earth, showing the sun over 22(S latitude (southern summer). 
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	Figure 3.1  Earth (the inner circle) as viewed from space. Each day, rotation around N (North Pole) take an observer at 22(S through a higher high and a lower high water.


A low latitude observer (say at 22( South) experiences two high tides each day as the earth rotates under each of the "bulges" of water. However, they would be of unequal magnitude – he would experience a semi-diurnal tide with a diurnal inequality. 

The semi-diurnal component is the original S2, of frequency 30(/h. The diurnal component (with frequency exactly half that of the semi-diurnal) is not actually observed; the annual transit of the sun between the Tropics splits it into two new frequencies, one of slightly higher, and one of slightly lower frequency. It does this by modulating the diurnal component.

If the sun remained permanently overhead at 22( South as in the figure, the diurnal component would not be split, and there would be a single astronomical S1 tide instead of P1 and K1. However, the sun does change its overhead position, and as a result, the amplitude of the diurnal component undergoes a sinusoidal modulation over the course of a year. 

The annual modulation is represented mathematically by multiplying the S2 wave by another at the annual frequency. If the diurnal component is written cos(S2t) and the annual modulation is cos(Sat), we have the product cos(Sat)(cos(S2t).  Then applying a basic trigonometric identity, we have: 

cos(Sat)(cos(S2t) = ½ (cos(S2+Sa)t + cos(S2-Sa)t). 

With S2=15(/hour, and Sa = 0.04(/hour we have two new constituents in the diurnal band with frequencies 14.96(/hour and 15.04(/hour – P1 and K1. To summarise, we began with a semi-diurnal harmonic with a diurnal variation, the latter varying over the course of a year, and ended with the same semi-diurnal, plus two new diurnals, one of slightly higher, and one of slightly lower frequency than the original diurnal cycle. 

Over the course of a month, the moon’s declination varies in the same manner as the sun does over the year, and in the same way, this gives rise to frequencies of one cycle per lunar day plus and minus one cycle per lunar month.  A lunar day being 50 minutes longer than a solar day (i.e., 24.83 solar days), one cycle per lunar day equals 14.49(/hour, and one cycle per lunar month equals 0.55(/hour. When we take the sum and difference, we find the two frequencies are 15.04(/hour and 13.94(/hour. The first of these is so close to the solar K1, in frequency and genesis, that the two are combined into a single “K1”. The second frequency is given the name “O1”.  

A simple modulation as shown above splits a sinusoid into two sidebands at the complete expense of the main line. In most cases, most of the energy remains with the main line.  This occurs, for example, in the effect of the ellipticity of the moon's orbit. The simplest way to see this is to start by re-writing the potential (from Chapter 1) as:
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If the orbit were circular, rm would be constant. If the ellipticity is not too large, we can write 

rm = r0 (1 + ). 

Using the approximation

(1 + )-3 ≈ 1 - 3

and allowing  to vary sinusoidally over the course of a month (i.e., with frequency Mm), in other words

 = a cos (Mm t),

we the have
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, or using the trigonometric identity as before,
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Thus the effect of the ellipticity, to first approximation, is to reduce the energy in the main M2 line slightly, while generating two new harmonics, equally spaced around the main line. This is a partial explanation of the origin of N2 and L2. The equivalent solar terms, T2 and R2, arise similarly. Our approximations are such that N2 and L2 appear of equal amplitude (
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) in the above, whereas in fact the tide-generating potential at the frequency of N2 is larger than L2 , and that of T2 is larger than R2. 

Many more tidal components can be understood in a similar manner as the above, with modulations arising from orbital ellipticities, orbital speeds, rotational direction changes, etc., giving rise to splitting of the fundamental tidal frequencies. The frequencies of the new components are always linear combinations of the six basic frequencies.

3.2  The spring/neap cycle
When the earth, moon, and sun are aligned (new or full moon), the effects of the moon and sun reinforce each other. This is known as the spring tide. When the moon is at right angles to the line connecting the earth and sun, the bulges partly cancel, producing the neap tides. This is illustrated in Figure 3.2.
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Figure 3.2  Two views of the earth from above the North Pole (NP), at first quarter and new moons. 

The view is from above the North Pole (NP). The dotted-line ellipse, which is identical in both cases, represents the principal solar semi-diurnal component of the equilibrium tide. The dashed-line ellipse, which represents the principal lunar semi-diurnal component, is only aligned with the solar tide ellipse when the moon, sun, and earth are in alignment (full or new moon). The combined tide (dash-dot ellipse) is the sum of the two, and the right-hand figure, which represents spring tides, clearly shows that the largest tides will occur when the sun, moon, and earth are in alignment. Neaps occurs when the moon is at right angles to the line joining the earth and sun, as drawn on the left,

The mathematical representation of the spring/neap cycle is in terms of the two signals (in this example the semi-diurnal tides M2 and S2) going in and out of phase over the course of a fortnight. This phenomenon is known as a "beats" or "beating" and in the context of tides is not confined to M2 and S2. When any pair of slightly-different frequencies (of similar amplitude) add together, their sum undergoes a regular cycle between near-zero magnitude (“neaps”), and a magnitude equal to the sum of the pair (“springs”). The period between successive "neaps" is equal to the inverse of the absolute value of the difference between the two frequencies (Figure 3.4). The frequencies of M2 and S2 are 1.9322 cpd and 2.0 cpd respectively; their difference is the beat frequency 0.0678 cpd, the inverse of which, 14.75 days, is the beat period – also known as the fortnightly or spring-neap cycle.
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Figure 3.3  The origin of the spring/neap cycle. The thick line is the sum of the two smaller sinewaves which come into and out of phase. The thick wave is a maximum when the two smaller waves are in phase.

Applying a trigonometric identity,

cos(M2t)+ cos(S2t)=2 cos ½(M2-S2)t ( cos ½(M2+S2)t 

as before, M2 and S2 are the speeds of M2 and S2. The term cos ½(M2+S2) is a pure harmonic whose frequency is the average of the pair. The term cos ½(M2-S2)t modulates the harmonic. In the case of M2 and S2, the average of the pair is slightly less than 2 cpd - thus, the two highs and two lows per day. The modulation frequency is half the difference, which comes to a period of 29.49 days. Because the modulation is indistinguishable over the two halves of the cosine cycle, there are two neaps and two springs per 29.49 days - thus, a neaps every 14.75 days.

3.3  Shallow water tides
When the ocean tide enters shallow water, continuity requires the flow to accelerate. In such circumstances, new frequencies appear in the tidal currents. The new frequencies are linear combinations of those of the generating harmonics. For example, the interaction of M2 and S2
 currents can produce four "new" frequencies at 4M2, 4S2, 2(M2 + S2), and 2(M2 - S2). This can be shown by representing the deep-water tidal currents as the sum of the M2 and S2 currents, and using the simplifying assumption that the shallow-water frictional effect is proportional to the square of the sum (uM2 cos M2 t + uS2 cos S2 t)2. The four frequencies, which appear when the square is taken (and standard trigonometric identities applied), are given the names M4, S4, MS4, and MSF. The first three have periods of approximately six hours (quarter-diurnal), but Msf has a period of 14.77 days – the same as the period of the spring-neap cycle. 

Although the preceding example shows how interaction might generate new frequencies, it is oversimplified inasmuch as the advective and friction terms in the momentum balance equations are not simple squares, but rather, take the forms 
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 (advection) and friction  
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 (friction), where 
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 is the velocity vector (magnitude u) and  is a factor having dimension L-1. Note also that the final result leaves no frictional term at the main flow frequencies (M2 and S2). The simplest example using the more realistic friction term, and a single driving frequency, results in a shallow-water tide of three times the frequency and a third the amplitude, in addition to the original, which is reduced in amplitude by 1/4. Let us say the coastal region is driven at the ocean boundary by M2 tidal currents, ucos t . The friction term is then ½ ucos t +0.5 cos 3t) (assuming one-dimensional flow, dropping the subscripts for simplicity, and using the approximation abs(cos t) ≈ ½ (1+cos 2t), see Figure 3.5). The new "shallow water tide" produced is M3.

	Figure 3.4  The absolute value of cos σt (solid line), plotted alongside 0.5•(1+cos 2t) (dashed line).
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One might conclude that the arguments could encompass virtually any tidal constituent or pair of tidal constituents, and in theory lead to an explosion of new frequencies (reminiscent of the "ultraviolet catastrophe" of 19th century physics.). For example, M3 would itself be acted upon by friction to produce M9. Of course, this process is limited by the finite energy available so that at any given location, a few shallow water species will dominate. A glance at the table of commonly-observed shallow water constituents shows only the most important gravitational constituents are listed amongst those that combine to generate them.

The term “shallow water tides” is sometimes used synonymously with “compound tides” or “overtides”. However, as we have seen, not all shallow water tides are of higher frequency than the generating constituents (as one might  expect  for an “overtide”), and moreover, compound tides and overtides have been found in deep water observations. The term overtide usually refers to shallow water tides or tidal currents whose frequencies are multiples of the generating constituent - thus, M4, M6, M8 and M12 are overtides of M2. "Compound tide" implies a combination of two or more gravitational constituents.

Table 3.1  Commonly-observed shallow-water constituents. Compiled from various sources.
	Name
	Combination of:
	Speed determined by:

	Msf
	M2, S2
	σM2 - σS2

	MP1
	M2, P1
	σM2 - σP1

	SO1
	S2, O1
	σS2 - σO1

	MNS2
	M2, S2, N2
	σM2 + σN2 - σS2

	2
	M2, S2
	2σM2 - σS2

	2SM2
	M2, S2
	2σS2 - σM2

	MO3
	M2, O1
	σM2 + σO1

	MK3
	M2, K1
	σM2 + σK1

	MN4
	M2, N2
	σM2 + σN2

	M4
	M2
	2σM2

	MS4
	M2, S2
	σM2 + σS2

	SK4
	S2, K2
	σS2 + σK2

	MK4
	M2, K2
	σM2 + σK1

	S4
	S2
	2σS2


	2MN6
	M2, N2
	2σM2 + σN2

	M6
	M2
	3σM2

	MSN6
	M2, S2, N2
	σM2 + σS2 + σN2

	2MS6
	M2, S2, N2
	2σM2 + σS2

	4MS6
	M2, S2
	4σM2 - σS2

	3MS8
	M2, S2
	3σM2 + σS2

	2(MS)8
	M2, S2
	2σM2 + 2σS2

	M8
	M2
	4σM2

	MSNK8
	M2, S2, N2, K2
	σM2 + σS2 + σN2 + σK2


Notes

1.  Expressions such as M2 - S2 are sometimes written M2 - S2 (§ 2.4).

2. Msf also has a contribution from the tide-generating potential, i.e., a gravitational component.

3. Some authors use "2MS2" for the shallow-water tide to distinguish it from the gravitational constituent 2. The two have the same mean frequency.

3.4  The nodal cycle
The moon’s elliptical orbit around earth is at an angle to the earth’s axis of rotation, and over time the orientation of the plane defined by the elliptical orbit rotates. As it does so, its nodes – the intersections of the orbit with the plane of the earths equator – circuit westward through 360( of longitude. It does this once every 18.61 years. This “regression of the lunar nodes” or nodal cycle has a modulating effect on the amplitude and phase of all lunar tidal constituents, because over its course the maximum declination of the moon varies between 18.3( and 28.6( latitude north and south of earth’s equator. Quite apart from its effect on the short-period lunar tides, it also creates a small but measurable long-period constituent of the equilibrium tide, called the nodal tide, also of period 18.61 years, but out of phase with the modulation by 180( (when the nodal tide is a maximum, the modulation is a minimum). The nodal tide is normally ignored, even with very long data sets, as it is smaller than long-term oceanographic and geophysical changes (it is about 9 mm at the equator, falls to zero at 35( north and south, and reaches a maximum of 18 mm at the poles - about 13 mm when the elasticity of the earth is accounted for). 

In tidal predictions, the nodal cycle is normally accounted for by modulating the lunar and partly-lunar constituents with "corrections" known as the nodal factor fn(t) and nodal phase un(t) (a subscript n is added here to emphasise that there are different factors and angles for different harmonics). The nodal factor is close to unity, and the phase angle is always small (they are identically unity and zero for purely solar terms). A number of entries in Doodson's Schedules had a non-zero value for N (the fifth integer), and later compilations, such as that of Godin (1972) and Amin (1976) include additional examples. Many of these are included in Table X, but they are not given names and rarely used in practice for ocean tides.  

The nodal corrections are based on the tidal potential theory. Earlier we saw how P1 and the solar part of K1 arose due to the annual modulation of the diurnal variation of S2. In the case of the nodal corrections, it was necessary in the past to represent the modulation explicitly rather than attempt to resolve the sideband frequencies. Although data is now available for many sites of such length and quality that it would be possible to include them in the harmonic model, most analysts continue to follow the former procedure.

Foreman (1977) sums Vn(t) and un(t) into a single variable (VU1). Schureman (1941) tabulates u as a function of two small angles, ξ and ν, which are given in a separate table.
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Figure 3.5  Sea levels recorded at sites around Australia from 1 - 18 January, 1970. From Radok, 1976.

Chapter 4

Analysis and prediction

4.1  The harmonic method
The purpose of a tidal analysis is to determine the unknown constants, Z0, n, and gn , in the following expression for hp(t). The same equation is used as the basis for both analysis and prediction:

hp(t) = Z0 + fn(t) n cos(n t – gn + Vn(t0) + un(t)], n=1,N.  

Where 

Z0 is mean sea level measured relative to LAT or chart datum (see §5.9)

N is the number of harmonics or tidal constituents in the model,

n is the "speed" (frequency in degrees/hour) of the nth harmonic,

Vn(t0) is the phase of the equilibrium constituent of speed n, evaluated at time t0 (see below),

fn(t) is the nodal factor (§ 3.4) for the equilibrium constituent,

un(t) is the nodal phase (§ 3.4) for the equilibrium constituent,

Hn is the amplitude of the nth harmonic, and

gn is the phase lag of the nth harmonic behind Vn(t0)+ un(t0), adjusted for the time zone to be analysed for (or for predictions to be made in). For the time being, we will take time to be measured in UT, so that gn is "gn(UT)" in the terminology used elsewhere in the Handbook.
Hn and gn are known as the "harmonic constants". 

The analysis proceeds by separating hp(t) into “knowns” and “unknowns”:

hp(t) =  zo  + Cn n(t) +  Sn n(t), 

where 

n(t) = fn(t) cos(Vn(t0) + un(t) + nt)  (a known function of time), 

and Cn and Sn are unknown constants.

The separated equation for hp(t) may be solved for Z0, Cn, and Sn by least squares. Then Hn and gn may be found by solving Hn = (Cn2 + Sn2)1/2, and gn = arctan (Sn / Cn). Tide Tables, such as the Australian National Tide Tables, contain tables of Hn and gn for major tidal harmonics at  important ports. While Tide Tables typically list only four diurnal and four semi-diurnal harmonics, official predictions commonly use 114 or more harmonics (given at least a year of sea level observations). The details of the least-squares analysis procedure are too involved to be given here. The procedure is outlined in Murray (1964).

With modern computers, f and u can be evaluated at each time step without significant time cost, however they are frequently allowed to remain constant for one or two months during the process of evaluating the summations, as their variations are negligible over such an interval. The question of time zone is actually irrelevant to the evaluation of f and u.

4.2  A sample prediction
The following sample prediction is given purely as a learning aid. It is not intended as a substitute for professionally prepared and tested tidal predictions.

The basic formula for prediction was written (Section 4.1):

hp(t) = Z0 + fn(t) n cos(n t – gn + Vn(t0) + un(t)], n=1,N. 

In this example the number of constituents, N, will equal 4, and the hourly sea levels for Adelaide (Outer Harbor) South Australia are computed for St. Valentine's Day, Saturday 14 February 2004. The time 0000 hours UT on that day will be referred to as “t0”.

The following table is abstracted from Table 7.1 (Doodson Numbers) for the four largest terms.

Table 4.1  Doodson Numbers, equilibrium phase angle, and speed for O1, K1, M2, and S2. 

	Lunar
	Solar
	
	
	

	1
	-1
	0
	0
	0
	0
	1
	-2
	1
	0
	0
	0
	270
	13.9430356
	O1

	1
	1
	0
	0
	0
	0
	1
	0
	1
	0
	0
	0
	90
	15.0410686
	K1

	2
	0
	0
	0
	0
	0
	2
	-2
	2
	0
	0
	0
	0
	28.9841042
	M2

	2
	2
	-2
	0
	0
	0
	2
	0
	0
	0
	0
	0
	0
	30.0
	S2


The values in the following table are based on the Australian National Tide Tables for Outer Harbor, Adelaide, South Australia for the year 2000.

Table 4.2   Amplitude and phase lag of O1, K1, M2, and S2 at Outer Harbor, Adelaide.

	
	Z0
	O1
	K1
	M2
	S2

	Amplitude (m)
	1.38
	0.170
	0.252
	0.500
	0.500

	LT* phase lag (º)
	
	21.9
	49.0
	106.6
	175.6

	UT phase lag (º)
	
	249.44
	266.11
	191.252
	250.6


*The ANTT gives phase lag in "LT", or local standard (not summer or "daylight savings") time.

For the nth harmonic,  

Vn(t0) = iat0 + ibs(t0) + ich(t0) + idp(t0) + ieN(t0) + ifp'(t0) + n.  

We will also need to know the value of the reference signal, Vn(t), for each of the constituents at t0. Referring to the Task-2000 algorithms (§ 2.6), we have IY=104 and DL = 69, and 

s(t0) = 242.2158(, and

h(t0) = 323.3725(. 

For reasons that will become apparent, p(t0), N(t0), and p'(t0) will not be required for any of these constituents.

Since we are predicting in solar time, the terms ia , ib , etc. are taken from the “solar” columns of the table. For example, the Doodson Number for O1 is (1 –2 1 0 0 0) so for O1, 

ia = 1, ib = -2, ic = 1, id = 0, ie = 0, and if = 0. we also see that for O1,  = 270(.

At 0000 hours, t = t0 = 0, so that the first term in Vn(t0) is zero.

VO1(t0) =  – 2s(t0) + h(t0) + 270( = 108.941(
VK1(t0) =  h(t0) + 90( =  413.3725( = 53.3725( (360( has been subtracted)

VM2(t0) =  – 2s(t0) + 2h(t0)  =  162.3134(
VS2(t0) =  0.0  (always)

The nodal corrections, f and u, modulate the amplitude and phase of the lunar and luni-solar terms – in this case, O1, M2, and K1. From Table 7.2, with N(t0) = 45.3745, 

f(O1) = 1.0089+0.1871*cos N(t0)  - 0.0147*cos 2N(t0) +0.0014*cos 3N(t0)

u(O1) = 0.1885*sin N(t0) -0.0234*sin 2N(t0) +.0033*sin 3N(t0)

f(K1) = 1.0060+0.1150*cos N(t0) -0.0088*cos 2N(t0) +0.0006*cos 3N(t0)

u(K1) = -0.1546*sin N(t0) +0.0119 * sin 2N(t0) – 0.0012*sin 3N(t0)

f(M2) = 1.0004-0.0373*cos N(t0) + 0.0002*cos 2N(t0)

u(M2) = 0.0374*sin N(t0)

The values of u in the above are in radians. 

The basic formula was solved using the UT phase lags and the data for V, g, f, u, etc. If the predictions were required for times 0000, 0100, ... 2300 in UT, then t would take on the values 0, 1, 2 ... 23. Since we want predictions at times 0000, 0100, ... 2300 in LT (9.5 hours ahead of UT), 9.5 was subtracted from t – in other words, it was solved for t = -9.5, -8.5, -7.5 ... -15.5. An alternative would have been to use the LT phase lags and to solve at t = 0, 1, etc. The answers would have been identical, but at the expense of logical consistency.

Table 4.3  Hour (local time) and height (in metres) of predicted tide at Outer Harbor, SA, using O1, K1, M2, and S2 only.

	Hour
	h(t)
	Hour
	h(t)
	Hour
	h(t)
	Hour
	h(t)
	Hour
	h(t)
	Hour
	h(t)

	0
	1.41
	4
	1.15
	8
	1.45
	12
	0.92
	16
	1.20
	20
	1.98

	1
	1.21
	5
	1.27
	9
	1.36
	13
	0.85
	17
	1.45
	21
	1.99

	2
	1.10
	6
	1.38
	10
	1.22
	14
	0.88
	18
	1.68
	22
	1.92

	3
	1.08
	7
	1.45
	11
	1.06
	15
	1.00
	19
	1.87
	23
	1.79


4.3  The response method
The tide-generating potential was shown to provide a set of frequencies to tidal harmonic analysis. One limitation of the harmonic method is that although it is based, as we have seen, on the physics of the gravitational fields, part of the physics of the forced oceanographic system (for example, meteorological forcing) is ignored or included only in an ad hoc manner. With the so-called "response method" (Cartwright, 1982), the Legendre polynomial representation is transformed into one involving time-variable spherical harmonics (a natural basis on the surface of a spheroidal earth), which, along with terms representing radiant flux, are used as input functions to a linear system (essentially the ocean), with observed sea level being the "response". Although the response method takes into account the physics of the large-scale ocean, many coastal tides are generated in shallow water and are difficult to include in the analysis. 

The response method treats the tide gauge data as the empirical response of the ocean to the forcing of the tide-generating potential (which is treated as the “known” input to a linear system). The relationship between forcing and response takes the form of a set of weights unique to each location, which are determined by the response analysis. The tide at some future time can be predicted on the basis of the weights and the tidal potential at that time.  

A response method analysis consists of determining a set of complex weights (typically five) which define the admittance of the response system at a given frequency.  Once known, the admittance, combined with the known coefficients on the spherical harmonics representing the tide-generating potential, can be used to deduce the amplitude and phase of the usual harmonics (M2, S2, etc.).

The admittance is sometimes defined as the ratio of the spectra of the sea level and the equilibrium tide (or tide-generating potential), and sometimes as the ratio of their cross-spectrum and the spectrum of the equilibrium tide. Being a complex quantity, it has both amplitude and phase. 

Orthotides (Groves and Reynolds, 1976), are an orthogonal set of functions consisting of linear combinations of the coefficients on the spherical harmonics.  The purpose of using these functions instead of the original coefficients is to add stability and convergence to the response method computation. 

4.4  Tidal software 

A distinction must be drawn between interactive, internet-based software packages such as Seafarer, WXTide, and TspPacific, and the packages used by most national institutions for predicting tides. The former have their purposes and are sometimes handy even for tidal experts (when accuracy is not required). However, our focus is on the latter type, which generally have a much greater degree of flexibility in input parameters, even to the point of making the code itself available. Two such packages, both well-known, are the “Foreman package” (Foreman 1977, based on the work of G. Godin), and TASK-2000 from the Proudman Oceanographic Laboratory and the Permanent Service for Mean Sea Level, UK. A number of institutions also used the package created by the Australian National Tidal Facility (NTF), which in most respects follows the same conventions used in TASK-2000.

All tidal packages contain certain assumptions regarding the phases of constituents whose origins are both radiational and gravitational – the choice being whether to reference the phase to the gravitational or radiational forcing. Different packages will derive different phase lags, meaning that predictions will only be valid if made using the package that did the analysis. The main differences involve Sa and S1, the annual and diurnal solar constituents. For example, the coefficient of the Doodson Number for the solar perihelion term (p') in Sa is set equal to –1 in the Foreman package, whereas it is zero in TASK-2000. Under the heading Doodson Number, we see that p' for the year 2003 is 263.5( - approximately three months difference for Sa. Since the astronomical argument for Sa is simply h in TASK-2000, if an analysis using that package found phase lag for Sa to be zero, then it has a maximum at the beginning of the tropical year (at the northern hemisphere spring equinox). The astronomical argument for Sa in the Foreman package being h – p' means that the argument of the cosine used in the prediction of tides would have to be (h – 263.5( - 96.5() – that is, phase lag in a Foreman analysis would be 96.5(. 

Tide packages also differ in the astronomical argument used for the solar diurnal tide, S1. If treated purely as a gravitational tide the argument would be (p' + with usually equal to 90( If treated as  a purely radiational tide, as in the NTF and TASK-2000 packages, the argument is simply (and  = 180(, corresponding to a midday maximum for S1.  

Other differences can arise due to differences in interpretation of the phase of smaller components that arise from combinations of lunar and solar forcing. Only the lunar part is affected by the nodal cycle, and its relative influence may vary regionally, making a universal choice for  impossible. 

The main point in all these cases is that for any given set of tidal constants the tide software package used in the analysis must always be specified, so that the same package (or same set of constituents, corrections and reference phases) can be used for the prediction. Only in this way can the foregoing difficulties be avoided. 

Chapter 5

Sea level observations

5.1 Tide gauges
Gauges used to provide an observed time series of sea level have taken many forms. Until the 1980's, the majority of instruments were based on float mechanisms, tide staffs, bottom-mounted or gas-bubbling pressure devices. 

Float gauges often rely on a "stilling well" to damp out surface wave action. An orifice at the bottom allows water to enter the well. The ratio of the diameter of the orifice to that of the well is a critical factor in determining the amount of damping. A typical ratio is 1:10, but the ratio can be further reduced at sites subject to exceptional wave energy. 

Conventional tide gauges with automatic recording devices are frequently accompanied by a tide staff. The tide staff serves as a means of checking the tide gauge zero and the operation of the recording device, particularly for the older analog devices. For the latter calibration, a test known as the "Van de Casteele" test (see Chapter 6) is often used.

Bottom-mounted pressure gauges measure the weight of the water column above the gauge. Unless the gauge is vented to the atmosphere the barometric pressure must be subtracted from the record prior to converting pressure to water level. The latter conversion is based on the hydrostatic equation. As a rule, in shallow water, this is simply a matter of applying the fact that the pressure changes by about one decibar, or 10 kPa, per metre. If greater accuracy is required, or if the integrated effect of steric changes must be accounted for, the formula below, of Fofonoff and Millard, in UNESCO (1983). The first term involves variations in pressure and gravity alone, while the second term accounts for steric changes.
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Here

z = water depth in metres corresponding to a change of pressure p in decibars (db)

g()  = acceleration of gravity (ms-2) as a function of latitude ()
         = 9.780318 (1.0 + 5.2788 x 10-3 sin2 x 10-5 sin4  

' = 2.184 x 10-6 ms-2/db  (an approximation to the mean vertical gravity gradient, dg/dp) 

c1 = 9.72659; c2 = -2.2512 x 10-5; c3 = 2.279 x 10-10; c4 = -1.82 x 10-15
The term D, known as the "geopotential anomaly" (J/kg, i.e., m2/s2), is a measure of the integrated effect of steric changes in the water column - that is, the variations of temperature and salinity. If the water temperature and salinity happened to be 0(C and 35 psu uniformly from top to bottom, then D would equal zero. Unfortunately, there is no simple formula for D, as it requires a numerical integration involving the equation of state for seawater.  The geopotential anomaly is the vertical integral of the specific volume anomaly ():
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, where  is defined as  = V(S,T,p) - V(35,0,p), where V is the specific volume. Algorithms for finding the specific volume can be found on the web, for example:

http://ioc.unesco.org/oceanteacher/resourcekit/

Finally, we note that the equation for converting pressure to depth was derived by a polynomial fit to the true hydrostatic relationship. If steric and gravity changes are ignored, and only the linear term in pressure is retained, we are left with z = c1p/g, or 
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, which is the approximation given above, valid for z in metres and p in decibars.

Bubblers are also a form of pressure device, but the gauge and recording device are located out of the water, the only submerged element being a nozzle to which gas is continuously fed from a bottle. The flow is adjusted to continue at a minimum rate when water level is near maximum. As the water level drops, the back pressure on the gas in the line feeding the nozzle decreases. The back pressure is recorded as a voltage level or its digital equivalent.

Two of the most recent types of tide gauge are the radar and acoustic instruments. The former is a freestanding, portable unit which sends a microwave pulse downward through free air and measures the return time. The latter also measures return time, but relies instead on an acoustic pulse sent down a 13 mm (internal diameter) ABS sounding tube. The return travel time through the air between a transmitter/receiver and the water surface below is converted to sea level. A calibration hole, drilled into the tube at a set distance from the transmitter, causes a secondary reflection which is used to correct the sound velocity  (which changes with temperature and other factors). Most acoustic instruments are very lightly damped in comparison to the 1:10 ratio of float gauges. For example, the acoustic instruments of the Australian Baseline and Pacific arrays are damped only 1:3. The mechanical damping is replaced by digital filtering of the return signals. A pulse is sent down the tube every second for three minutes. The arithmetic mean of the return times is then recorded. The standard deviation of the times is also recorded, as it is used to eliminate outliers and can be related to the significant wave height (swh), both of which can be of significant advantage.
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	Figure 5.1  A "SEAFRAME" at Cape Ferguson, Queensland, operated by the National Tidal Centre, Bureau of Meteorology. The data logging hut is located unusually  high above water level due to the threat of storm surges locally.


The acoustic system is known as a "NGWLMS" (Next Generation Water Level Measuring Stations in the USA, and "SEAFRAME" (Sea Level Fine Resolution Acoustic Measuring System) in Australia. A typical SEAFRAME system consists of the pvc sounding tube, enclosed for protection in a larger pvc "environmental tube" (the long white pipe in the photo), an acoustic transmitter/receiver located at the top of the environmental tube, and a data logging hut. SEAFRAMEs usually have a back-up water level device (such as a bubbler or pressure sensor), as well as an anemometer and other meteorological gauges. A satellite antenna is mounted at the top of the hut to transmit data in real time. A 26 GHz radar tide gauge manufactured by Vega Inc., and operated by the Queensland Environmental Protection Agency's Coastal services unit can be seen mounted on the right hand side of the hut.

5.2 Sea level residuals
Residuals are the difference between the observed water level (or currents) and the tidal prediction for a given location (residual = observed -predicted). Typical weather-related residuals are shown in the graphs under storm surge, although fortunately those are a fairly extreme example. Residuals are most commonly due to weather-related effects, the limitations of the harmonic model, harbour seiches, and errors in the measurement process or data processing, all of which leave recognisable imprints on the data. 

A common source of residuals is the inverse barometer effect. At higher latitudes, where the synoptic-scale barometric fluctuations are generally larger, these often appear as positive residuals lasting for several days, as a low pressure system moves over the area, bringing higher than predicted water levels. Given a simultaneous record of local atmospheric pressure, these may be reduced in amplitude by subtracting the hydrostatic equivalent (1.1 cm/mb) but care must be exercised because at some sites a dynamic response may predominate, especially over short (a day or less) periods.

Residuals will often appear at the change of tide, due to variation in the timing of the arrival of the tide. The speed of the tidal long wave varies as the square root of the water depth, which for its part varies in accordance with factors such as barometric pressure, nodal cycle, and mesoscale oceanographic changes. Any change in the phase of a sinusoid will be most noticeable when the function varies most rapidly - in this case, at the change of tide. In an M2-dominated environment, a spectral analysis of the residuals will reveal a cusp of energy centred on the M2 line.
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Figure 5.2  Six-minute sea levels (bottom line) and residuals (top line) at Pohnpei, FSM. The upper graph is an expanded view of a 24 hour period from midday on the 13th.

Tidal residuals from the Pohnpei (formerly "Ponape"), FSM,  sea level observations contain distinctive spikes during the neaps part of the fortnightly cycle (Figure 5.2). These last from 30-45 minutes, may reach half a metre, and occur at intervals of about 12 hours (the interval varies). Close inspection shows that the initial spike is normally followed by a second, smaller spike. There is also a significant diurnal signal that remains in the residuals at neaps. Consideration of these residuals is instructive, even though in the end the data will be found to be inadequate to absolutely confirm their origin. It is also worth noting that such phenomena would wreak havoc with shipping in many major shipping ports, through reduced clearances and horizontal "ranging" of ships lying at anchor.

The question of whether the spikes are weather-induced must always be considered. In this case, this was eliminated after comparing plots of the residuals against those of wind and barometric pressure.

The width of the main spike (30 - 45 minutes) suggests some form of seiche is involved. The tide gauge at Pohnpei is located about 3.5 km from the open ocean, measured along an S-shaped channel that winds through reefy shallows to the open ocean (Figure 5.3). The mean depth of the channel is about 10-20 m, but it shoals to 10 m near the gauge. The channel continues past the gauge another 2.5 km, gradually shoaling, with a mean depth of about 7 m. The complexity of the channel makes the computation a little arbitrary, but based on the above numbers, the formula for the period of an open-basin seiche suggests a resonant period in the correct range, depending on where the wave effectively reflects at the inner end of the channel. 

The next question is, what "sets off" the harbour mode? The trapping of free progressive ocean waves by the unique island geometry could be the answer. Island tide gauges often record high frequency oscillations due to their geometry. An incident long wave whose period is equal to the time required for a shallow-water wave to circumnavigate the island may set up a resonant mode of the same period. In the case of Pohnpei, the 1000 m contour surrounding the island has about the correct combination of length and depth for such a mode. Without additional data, combined with appropriate modelling, this speculation can not be positively confirmed.
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Figure 5.3  Pohnpei Island, with a white circle at the tide gauge site.

A further clue is provided by the appearance of the spikes only at neaps. At neaps, the currents are weakest, thus tending to rule against interactions between tidal components as the source (see shallow water tides). This also seems to rule out delayed timing (as discussed earlier), which in any case is unlikely since the spike amplitude greatly exceeds that of any tidal constituent. Instrument malfunction can also be discounted because there are two independent systems at the site which give identical readings. Their appearance at neaps instead bespeaks an origin involving a local resonance which can not exist in the presence of low water levels or strong currents.

5.3 The Nyquist frequency
The Nyquist frequency (fN) is the highest frequency that can be detected in a time series of data sampled at interval Δ: fN = 1/(2Δ). It is also known as the "folding frequency". If the sampled process contains significant energy at frequencies higher than fN, it may be "folded into" lower frequencies in the power spectrum of the data, leading to falsely high values. The term folding is used because the spectral value at frequency f (f < fN) contains power whose true frequencies are at f, f ± 1/Δt, f ± 2/Δt, f ± 3/Δt ...f ± k/Δt, so the energy at the higher frequencies, which are known as the "aliases" of f, are folded into the spectrum at f. This can only be avoided by advance determination of the periodicity of the highest frequency signal with significant energy, and then either physically filtering it out (one purpose of a tidal stilling well, Section 7.2), or by ensuring that it is sampled at least twice per cycle.

The alias effect is used to advantage in radio circuitry and elsewhere. An example in tidal practice is in the derivation of semi-diurnal and diurnal tides from Topex/Poseidon satellite altimeter data, for which Δ = 9.9156 days. The T/P data contains spectral peaks at 0.01623 d-1 and 0.01702 d-1 (periods of 61.62 days and 58.74 days) (Figure 5.4).  For the first peak, and choosing k = 19, we find that f + 19/Δ = 1.9324 d-1, the frequency of M2. For the second peak, and choosing k = 20, we find that f - 20/Δ = -2.0 d-1 (the negative of the frequency of S2). The power spectral density is defined as │H(f)│2 + │H(-f)│2  for 0 ≤ f ≤ ∞, where H(f) is the Fourier Transform of h(t). For real-valued h(t), H(f) = H(-f). Hence, significant energy at 2.0 d-1 in the spectrum will also appear at -2.0 d-1 and thence appear aliased into the spectrum at 0.01702 d-1.

	Figure 5.4  A portion of the spectrum of an artificial time series consisting of the sum of two sinewaves having periods equal to those of M2 and S2, sub-sampled at the T/P repeat cycle (9.9156 days). The two sinewaves "alias" the spectrum at 61.62 and 58.74 day periods.
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5.4  The Rayleigh criterion
The Rayleigh Criterion is a formula that indicates the length of data record required in order to separate two closely-spaced tidal constituents. It is based on the concept that the data record should be long enough that the two could go from in phase, to 180( out of phase, to back in phase again. For constituents of speed 1 and 2, the minimum time would be the absolute value of 360(/(1 - 2). Given a shorter record, inference would be required.

It has been pointed out that in the absence of "noise" in the data, the least squares algorithm would be able to separate four pure frequencies with only four hourly data points, based on the "four equations, four unknowns" rule of linear algebra. For the analysis of noise-free tidal data, then, the Rayleigh criterion is irrelevant. For all other data - that is to say, all real tidal data - it provides a criterion which is safe, if unnecessarily conservative. A modification (Foreman and Henry, 1979) which relaxes the criterion somewhat is to multiply the minimum time by the inverse square root of the signal to noise ratio (SNR). For SNR = 4, this would halve the time required by an analysis to discriminate between any two frequencies.  

5.5 Inference of constituents
Given a tidal data set of insufficient duration to separate a pair of constituents of similar frequency, one may infer the amplitude and phase of one member of the pair (generally the weaker) on the basis of an analysis of a longer data set from a nearby location (or in the absence of any nearby data, the equilibrium relationships). For a data set of less than one year, this approach is routinely used for P1 (from K1), K2 and T2 (from S2), N2 (from M2), 2N2 and ν2 (from N2), and Q1 (from O1), and many others can also be inferred. The inference relationships between the two constituents must be accounted for in the analysis.

The guidelines below are based on the Rayleigh Criteria. Additional constituents are related or removed altogether from the analysis as the data interval decreases. Where it says "relate S1 to K1", for example, it means the amplitude of S1 will be based on the ratio S1/K1 (of the amplitudes) and the phase of S1 will be based on the difference of phase S1 -K1 (adding 360( if negative). If basing the inferences on the equilibrium relationships set the phase differences to zero. It must be stressed that these are merely guidelines; they should not be seen as strict rules. Foreman (1977) shows that many of the "removed" constituents (below) may instead be inferred, and has instructions for data sets shorter than 38 days.

Guidelines for inference:

Given more than one year of data, the full set of 114 or more constituents may be used. If the data interval is less than one year, only the basic set of 60 constituents should be included in the analysis (these 60 are indicated by note "p" in Table 7.1). The following recommendations assume that the inferred constituent is the smaller-amplitude of the pair; most analyses check the nearby data (or equilibrium data) to ensure this is the case. A similar check may also be made before removing a constituent from the analysis. "N" (below) represents days. 

For 206 < N < 365:

Use Sa from a nearby port. If no reliable estimate is available, remove Sa from the analysis.

Relate S1 to K1, and T2 and R2 to S2.

Remove 1 and 1.

For 193 < N ≤ 206:

Relate 2N2 or μ2 (whichever is larger) to N2, ν2 to N2, and λ2 to L2.

Remove 2Q1, Q1, and .

For 182 < N ≤ 193:

Remove M1.

For 38 < N ≤ 182:

Use Ssa from a nearby port. If no reliable estimate is available, remove Ssa.

Relate P1 to K1 and K2 to S2.

Remove Msf , MP1, 1, SO1, OQ2, OP2, MKS2, MSN2, SO3, MS4, S4, 2SM6 and 2MS6.

5.6  Barometric effects
The redistribution of water in the ocean in response to the atmospheric high and low pressure systems is known as the "inverse barometer effect". At hydrostatic equilibrium, the ocean surface is depressed by approximately 1 cm per 1 millibar increase in atmospheric pressure (this result stems directly from the hydrostatic equation, 
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, with p being pressure, ρ being water density, and g being gravitational acceleration). The redistribution takes place primarily through long waves, which travel at the speed (gH)1/2 . In the deep ocean, this may be as fast or faster than the travelling lows or highs, but the response registered by most tide gauges generally lags well behind the barometer, and as often as not, another low or high comes along before an equilibrium response to the previous system is fully established. The response is also complicated by the effect of wind stress. The full elimination of the barometrically-driven responses from tide gauge data can not be achieved by the simple formula above. A more complete removal can be achieved through the use of a two-dimensional numerical model with an accurate bathymetry and non-reflective open boundaries.

5.7  Tidal current directions
The first step in the determination of the principal directions of the tidal streams is to create a scatterplot (Figure 5.5). Given the inexact nature of the phenomenon and the practical purpose to which is often applied, it may only be necessary to "eyeball" a line passing through the greatest mass of points, followed by an estimate of the angle between the line and one of the axes.
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Figure 5.5  A scatterplot plots the east-west velocity against the north-south velocity. This scatterplot shows that currents at this site are quite linear, aligned at about 45( to the northerly direction, with maximum southeastwards flows being slightly stronger than those to the northwest. 

A more accurate measure may be accomplished using a statistical procedure as "principal component analysis", or "empirical orthogonal function analysis". The currents are first represented as u (positive eastwards) and v (positive northwards) components. The 2 X 2 covariance matrix of u and v is then computed, and its eigenvectors found (standard subroutines are freely available for these procedures). The eigenvectors (whose absolute value should be less than or equal to one) are also written as a two by two matrix, which can be thought of as a "rotation matrix", each element of which is either a sine or cosine of the desired rotation angle.  Which one it is depends on the individual software package used in the computations, but a little experimentation easily settles the matter. If the directions of ebb and flow are substantially different, the two angles can be calculated by analysing the two conditions separately.

5.8  Rotary currents
Rotary currents are those that flow continually with the direction of flow changing through all points of the compass during the tidal period. They are usually found offshore where the direction of flow is relatively unrestricted. The tendency for the rotation in direction has its origin in the Coriolis force and, unless modified by local conditions, the change is clockwise in the Northern Hemisphere and counter-clockwise south of the equator. The speed of the current usually varies throughout the tidal cycle, passing through the two maxima in approximately opposite directions and the two minima with the direction of the current at approximately 90° from the directions of the maxima.  Sometimes tidal currents are depicted on maps as either pure ellipses or as the major and minor axes thereof. These always pertain to a specific tidal constituent, and implies that a tidal analysis of the u and v (eastwards and northwards) components has been performed on the scalar components of the stream. There are several ways in which the ellipse parameters may be specified, but since tidal analyses normally assign an amplitude and phase for the eastwards and northwards component (for each constituent), the most convenient approach is usually the one below, which specifies the parameters in terms of amplitude and phase. Let us say that the M2 constituent is found to have components u cos (t-gu) and v cos (t-gv), where u and v are amplitudes, is the speed of and gu and gv are phase lags (from the analysis). The tip of a vector fixed in the stream with these components traces out a vector in 12.42 hours. The amplitudes of the semi-major and semi-minor axes, and the direction of the semi-major axis, of the ellipse are given by: 

semi-major: ((u2 +v2 + )/2)1/2

semi-minor: ((u2 + v2 - )/2)1/2
direction: tan-1 [(vcos(gu-gv-))/(ucos )]

where

2 = [u4 + v4 + 2u2v2 cos2(gu - gv)]1/2, and 

= ½ tan-1 [(v2 sin 2(gu - gv)) / (u2 + v2 cos 2(gu - gv))].

The sense of the rotation of the vector around the ellipse is given by:

0 < gv - gu <  : counter-clockwise

 < gv - gu < 2 : clockwise

gv - gu = 0 or  : rectilinear flow.

5.9  The tidal datum
The word “datum” in relation to nautical charts means a reference level. The depths on the charts are measured downwards from the reference level, known as "Chart Datum" or CD. Normally the CD of the largest scale (most detailed) chart of a particular area is the relevant reference. 

The algebraic expression of the harmonic model given in § 4.1 used the symbol Z0 for mean sea level. This is the preferred international symbol. Z0 may be measured relative to CD, LAT (lowest astronomical tide, see below), both (if the two coincide), or some other datum. For example, in the Australian National Tide Tables (ANTT), Z0 is given relative to LAT. Some of these datums are illustrated in Figure 5.6.

	Figure 5.6  Chart soundings are always measured with respect to CD (Chart Datum), but the position of CD varies with different charts. For example, some authorities use Indian spring low water as the reference level for CD. 
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A number of hydrographic authorities worldwide have agreed (at least in principle) to equate CD to LAT (lowest astronomical tide, see below). This is to ensure that even when the tide is at its lowest point in the nodal cycle, the navigator can still expect the water to be at least as deep as the chart indicates – that is unless meteorological effects, shifting bottom sands, or other factors cause shoaling of the bottom. However, changing a long-accepted CD of a port is not always a simple matter, and the process of adjustment is ongoing.

Let us say we wish to know the mean water depth at a point marked 36 metres on a nautical chart. From the ANTT, we find that at a nearby port, Port Lincoln, Z0 = 0.9 metres. Since the ANTT quotes Z0 in relation to LAT, then the height of LAT above CD must also be found. At Port Lincoln, LAT is 0.2 metres above CD (this situation is somewhat similar to that in the illustration above). Thus, the mean water depth is 36 + 0.9 + 0.2 = 37.1 metres, and the depth may be as low as 36.2 metres at its lowest point in the nodal cycle. 

The 1994 Admiralty Tide Tables (ATT) quote Z0 = 0.7 m and LAT = -0.5 m for Cebu City, The Philippines. The ATT references Z0 , LAT, and other predictions to CD. A depth listed as 20 metres on the local chart has a mean depth of 20.7 metres but may fall as low as 19.5 metres at the lowest point in the nodal cycle.

The previous examples usually apply not only to MSL but also to the other planes (such as MHHW, see below) and hourly sea levels. Adjusting CD to LAT provides an obvious simplification, but in any case, if data are reported relative to Chart Datum (CD) (as is the case with all NTC data), users can relate the data directly to depth soundings shown on most marine charts - if the hourly observed sea level is +1.5 metres, an additional 1.5 metres of water may be added to the chart depths. 

The various tidal water levels – low water, mean sea level, etc. – are known collectively as “tidal planes”, "tidal datums", "tidal levels", "tidal elevations" or "datum planes". Although defined at a specific location (the tide gauge), for practical purposes they are considered points on a continuous surface. The full list is innumerable, and different countries define the tidal planes differently. For legal definitions, the appropriate regulatory authority or document should be consulted. The Australian Inter-governmental Committee on Surveying and Mapping (ICSM), Tidal Interface Working Group, has compiled a Compendium of Terms (May 2003) listing dozens of variations on terms such as "High Water Mark" and "Ordinary Spring Tides" as they have been defined in various local, state, and national entities over the years.

A number of the "mean" tidal planes can be defined either on the basis of harmonic constants or in terms of observations. For example, the Australian National Tide Tables (ANTT) defines Mean High Water Springs (for semi-diurnal ports only) as 
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, where M2 and S2 are the amplitudes of the tidal constants determined over at least one year's worth of data, whereas the Australian Hydrographic Service tidal glossary defines MHWS as "the mean level of high water at springs". The harmonic definition is generally seen as a convenient simplification of the data-based definition, but one not without risk. LINZ notes that on the east coast of New Zealand, N2 tends to predominate over S2, so that a naive application of the formula would lead to an erroneous estimate of MHWS. For related reasons the ANTT, using harmonics, defines a different set of tidal levels (MHWS, MHWN, MLWS, MLWN) at semi-diurnal ports, than those for diurnal ports (MHHW, MLHW, MHLW, MLLW). (For the latter ports, no reference is made in the definition to a fortnightly modulation, although such may occur.) United States practice has conventionally adhered to observation-based definitions, although the harmonic definition is recommended for certain terms (e.g. tropic range). The question of whether a port is diurnal or semi-diurnal is usually answered by computing the form factor (Chapter 6).

A plot of water levels from various ports around Australia is shown in Figure 5.7. Note the vertical scale change between plots. Also plotted are some of the tidal planes. The Groote Eylandt observations happened to have been taken during a period when sea levels were half a metre or so above sea level, probably due to weather effects, such as the presence of a large low pressure system over the Gulf of Carpenteria, which may also have caused winds to drive water to the western (Groote Eylandt) side of the Gulf. 

There was a full moon on the 8th day in the figure (8 January, 2004). The effect of the full moon can be seen most clearly in the tides at Broome, whose tides contain particularly large M2 and S2 components, due to resonance over the continental shelf and Timor Sea. In this region, the spring tides occur a few days after full moon (this delay is the quaintly-titled "the age of the tide"). The first European to have noticed the large spring range and age of tide near present-day Broome seems to have been William Dampier, in 1688, who wrote in his Captain's Log (loosely quoting): "The most irregular tides I ever did meet with are on the coast of New Holland (Australia) in about 17º S. In all the springs (fortnightly cycles) that we lay here, the highest were three days after the full and change." By "irregular", Dampier presumably was referring to the large range, since the oscillations of sea level are in fact quite regular near Broome.
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Figure 5.7  Sea levels at four Australian location showing different tidal types.

Standard practice in Australia, South Africa, New Zealand and the United Kingdom is to define LAT as the lowest predicted value following a tidal analysis and prediction of water levels over a nodal cycle. Some authorities (e.g. Canada and US) define LAT as the lowest value reached in the observations themselves over a nodal cycle, but do not use it to define CD, which is based on "LLWLT" (Canada) and "MLLW" (US) (see below). (Charts covering both Canadian and American waters may have a slight depth discontinuity at the marine boundary as a result.)

The following list is meant to be indicative rather than exhaustive. More complete lists are readily available on the internet, e.g. on the websites listed below.

	Tidal planes or datums

high/low water (HW/LW): the highest/lowest level reached by the water during one tidal cycle. Also called high tide.  - AHS1.
higher high water (HHW/HLW): The highest of the high/low waters of any specified tidal day due to the declinational effects of the Moon and Sun. - AHS. Normally a consequence of a significant diurnal component.

highest/lowest astronomical tide (HAT/LAT): The highest/lowest tide level which can be predicted to occur under average meteorological conditions and under any combination of astronomical conditions. -AHS. Note: LAT is the baseline for the purposes of defining Australia's maritime boundaries in compliance with the UN Convention on the Law of the Sea.

Indian spring high/low water (ISHW/ISLW): an elevation depressed above/below mean sea level by the amount equal to the sum of amplitudes of the four main harmonic constituents: M2, S2, K1 and O1. - AHS. It is an approximation to the level to which the sea level is likely to rise/fall during a typical spring tide. Originally devised for the Indian Ocean by that granddaddy of tidallists, Sir George Darwin. - AHS.

lower high/low water (LHW/LLW): The lowest of the high/low waters of any specified tidal day due to the declinational effects of the Moon and Sun. - AHS.

Lower low water, large tide (LLWLT): average of all the lower low waters, one from each of 19 years of predictions. - CTM2
mean higher high/low water (MHHW/MHLW): the mean of the higher of the two daily high/low waters  over a specified interval, usually a nodal cycle (19 years). Applicable in diurnal or mixed ports. - AHS.

mean higher high water (NOAA version): The average of the higher high water height of each tidal day observed over the National Tidal Datum Epoch. For stations with shorter series, simultaneous observational comparisons are made with a control tide station in order to derive the equivalent datum of the NTDE. - NOAA3. Others like MHLW are given similar definitions.

mean higher high/low water (harmonic versions): 
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mean lower high/low water (MLHW/MLLW): the mean of the lower of the two daily high/low waters  over a specified interval, usually a nodal cycle (19 years). Applicable in diurnal or mixed ports. - AHS.

mean lower high/low water (harmonic versions): 
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mean high/low water springs: The average of all high/low water observations at the time of spring tide over a period time (preferably 19 years). - AHS.

mean high/low water springs (harmonic versions): 
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mean high/low water springs:  The average of the levels of each pair of successive high/low waters, during that period of about 24 hours in each semi-lunation (approximately every 14 days), when the range of the tide is greatest. - LINZ4.

mean high/low water neaps: The average of all high/low water observations at the time of neap tide over a period time (preferably 19 years). - AHS.

mean high/low water neaps (harmonic versions): 
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mean sea level: the mean of sea level observations or residuals; to account for the nodal cycle, 19 years of data are required.

neap high/low water: same as MHWN/MLWN

spring high/low water: same as MHWS/MLWS

1AHS: Australian Hydrographic Service glossary (http://www.hydro.gov.au/prodserv/tides/tidal_glossary/tidal_glossary.htm)

2CTM: Canadian Tidal Manual

3NOAA: United States National Oceanographic and Atmospheric Administration glossary (http://co-ops.nos.noaa.gov/tideglos.html)

4LINZ: Land Information New Zealand glossary (http://www.hydro.linz.govt.nz/tides/info/tideinfo5.asp)




The predictions, and CD, must also be related to a fixed benchmark on land. This benchmark usually takes the form of a bolt firmly fixed in a concrete pier, a groove on a plaque, or simply a spike driven into a rock. The benchmark is used as a survey reference. A tide gauge benchmark is normally located on land near a tide gauge, and is used by surveyors to track shifts in the level of the tide gauge (often due to vertical movement of the wharf on which it placed). 

Chapter 6

Tidal terminology
absolute sea level 

When sea level is referenced to the centre of the Earth (or to a point known to be a fixed distance from the centre), it is sometimes referred to as “absolute”, as opposed to “relative”, which is referenced to a point (eg. a coastal benchmark, see § 5.9) whose vertical position may vary over time. 

acoustic tide gauge see § 5.1
admittance see § 4.3
age of the tide

The delay in time between the transit of the moon and the highest spring tide. Normally one or two days, but it varies widely. In other words, in many places the maximum tidal range occurs one or two days after the new or full moon, and the minimum range occurs a day or two after first and third quarter. In a semi-diurnal tidal environment dominated by M2 and S2, the age in hours can be computed using the formula (gS2 – gM2)/(M2 - S2), where gS2 and gM2 are the phase lags (in degrees) from an analysis of the data, and M2 and S2 are the speeds (in (/hour). A similar formula can be devised for a diurnal environment dominated by O1 and K1.

alias frequencies see § 5.3
amphidrome 

Maps of specific tidal constituents (eg. M2) are normally drawn with lines connecting points of constant amplitude (co-range or co-amplitude lines) and/or phase (co-phase lines) (Figure 6.1). The co-phase lines often appear like spokes radiating out from a central hub - the "amphidrome" or "node". Often a single map will show a number of these "amphidromic systems". The co-range lines more or less encircle the amphidrome, where the constituent amplitude is least. If M2 is strongly dominant, the high water crest rotates around the amphidrome through the tidal cycle. The co-phase lines may be labelled in degrees or hours (eg 0 through 11 for S2). 

	[image: image61.png]



	Figure 6.1  A schematic of an amphidrome. Dashed lines show amplitude, increasing away from the node. Solid lines show phase (degrees), increasing counter-clockwise around the amphidrome (typical of northern hemisphere amphidromes). If the co-phase lines were in hours instead of degrees, they would be labelled 0, 1, 2...11 for a semi-diurnal (approximately 30(/hour) tide, or 0, 2, 4...22 for a diurnal (approximately 15(/hour) tide. 


Amphidromes are resonance phenomena, with higher-frequency constituents tending to have lesser areal extent. Whereas O1 has an amphidrome virtually over the entire North Atlantic Ocean, M2 has two.  

amplitude see § 2.1
angular velocity

Rate of rotation, usually expressed in radians per unit time (as compared to the more familiar cycles per second). Since there are 2π radians per cycle, the angular velocity of Earth’s rotation is 2π radians/sidereal day, or 0.729211 x 10-4 radians/second. 

aphelion 

The point in the elliptical orbit of Earth or other planet when it is furthest from the Sun. 

apogee

The point in the Moon’s elliptical orbit when it is furthest from Earth. At this time, the tidal range tends to be reduced. The term "apogean" is sometimes used to indicate this situation, but its opposite, perigean tends to be used more often because the larger perigean tides are naturally of more concern.

apsides 

The points in the orbit of a planet or moon which are the nearest and farthest from the centre of attraction. In the Earth's orbit these are called perihelion and aphelion, and in the Moon's orbit, perigee and apogee. The line passing through the apsides of an orbit is called the line of apsides. 

astronomical argument 

The astronomical argument is essentially the same as the phase (§ 2.4), but omitting the term iat. For example, the solar day-based astronomical argument for the constituent M1 is -s(t)+ h(t) + 90(. Based on lunar days, it is simply 90(. The corresponding astronomical arguments for N2 are -3s(t) + 2h(t) + p(t) and -s(t) + p(t). (In the shpNp' notation, which we recommend against, these are written –3s + 2h + p and –s + p).

atmospheric tides see radiational tides
azimuth see celestial sphere    

baroclinic/barotropic see internal tides
beat frequency see § 3.2
benchmark see § 5.8
black moon

A mythological object supposedly existing at the site of the unoccupied focus of the orbital ellipse traced out by the moon (the other focus being claimed by the earth). It has no other astronomical or tidal significance, but has a place in astrological mumbo jumbo.

bore see tidal bore

bubbler see § 5.1
cadastre

A register of land/marine boundaries. At the coastline, the cadastral boundaries are complicated by the changing nature of the waterline due to tides etc.

canal theory

An early mathematical attempt  by Airy (1845) to explain the tidal motions by using the hydrodynamic equations of motion. The boundary conditions were unrealistic, treating the ocean as a canal with rigid vertical walls running around the equator or other latitude. 

celestial sphere 

Astronomers use the concept of a celestial sphere in order to have a reference system for locating objects in space. The points where the earth’s axis of rotation intersects the celestial sphere are known as the celestial poles; the intersection of the plane containing the earth’s equator is called the celestial equator. The angle between the celestial equator and a point on the sphere is the “declination” (north or south, as with latitude on earth). The angle along the celestial horizon measured between due north (or south if specified) from the observer clockwise to the point vertically below the point of interest is the “azimuth”.  The apparent path of the sun around the celestial sphere, over the course of earth’s annual orbit, is known as the “ecliptic”. 

	[image: image62.png]



	Figure 6.2  The celestial sphere, as seen from on high, far out in the starry heavens.

The green outer circle is a perimeter of the celestial sphere. The north and south celestial poles are labelled NCP and SCP. The plane of the ecliptic is yellow. 


The ecliptic, rather than the celestial equator, is generally used as a reference because most planets, our moon, and of course the sun all remain relatively close to the plane of the ecliptic, and hence their motions may be traced along or close to it (as opposed to the celestial equator, which is permanently inclined at 23.5º). This is why tables of orbital data for planets, for example, list the angle of inclination of their orbits to the ecliptic.

chart datum (CD) see § 5.9

circadian rhythms 

Biological processes which re-occur on a regular basis governed by an internal timing mechanism are known as circadian rhythms. The timing may be reset by environmental changes such as changing length of day. Some animals also respond to tidal cycles, such as the spring-neap cycle. Some crabs have both circadian and tidal behavioural cycles, with their colour changing diurnally while their activity level varying over a period equal to the spring-neap cycle (even when removed to an aquarium). Related biological terms include circalunar (tied to the alignment of earth, moon, and sun) and circatidal (tied to the ebb and flood of the tide) rhythms, both pertaining to behaviour or physiology, which are usually found in littoral (nearshore oceanic) species.    

component see § 5.8
compound tide see § 3.3
constants

Harmonic tidal analysis represents the sea level record as the sum of cosine waves. Each wave (or “constituent”) is uniquely identified by its frequency (or “speed”); for a given location, each frequency has an amplitude and phase (see § 2.1) which do not vary with time, and are hence known as “constants”. Tidal currents may also be harmonically represented by tidal constants, by first resolving them into north/south and east/west components (or along- and across-stream components).

constituent see constants

co-phase line and co-range line see amphidrome
Coriolis force 

A moving body on the surface of the earth experiences a tendency to turn to the left (right) in the southern (northern) hemisphere due to earth's rotation. This tendency (which is an artifice of the rotating reference frame rather than an actual force) is known as the Coriolis force (or acceleration) and is only noticeable with larger scale motions such as ocean currents and winds (despite the myth of bathtub drain vortices rotating in opposite directions on either side of the equator). The Coriolis force affects the direction with which the tide propagates around an amphidrome and can also affect the propagation of the tide as it moves up a broad channel (most noticeably by tilting the water surface to the left or right of the direction of propagation).

co-tidal line 

A line of constant phase or amplitude on a map of a tidal constituent (see amphidrome). 

datum see § 5.8
day

The word day as commonly used refers to a mean solar day (msd) – the time between successive transits of the sun overhead or across a single meridian. The time required for earth to undergo a single revolution, known as a sidereal day, is slightly less owing to the earth’s orbital motion. A sidereal day is 0.9973 msd.  The time between successive transits of the moon, known as the mean lunar day, is 1.035 msd - slightly longer than a msd as a consequence of the moon’s orbital motion.  

declination see celestial sphere 

diurnal tides see species 

diurnal inequality

The condition whereby the daily high waters or low waters are of significantly different level.

dodge tide

Local South Australian term for a neap tide with minimal rise and fall over the course of a day or so. While very “flat” neaps (see neap tide) occur in a number of locations worldwide, the term “dodge” is used only in South Australia. Professor Sir Robert Chapman, C.M.G., writing in the Official Yearbook of the Commonwealth of Australia of 1938, stated “At spring tides the range, due to the semi-diurnal waves, is 2(M2 + S2), and at neaps, if the two are equal, or nearly equal, they practically neutralize one another and cause no rise nor fall at all. This is what happens at Port Adelaide where at this period the recording gauge shows frequently little or nothing in the way of tide, in some cases the level of the water remaining almost constant for a whole day; in other cases one small tide occurs during the day. On each side of this tide is markedly irregular both as regards time and height, and the apparent impossibility of saying when the tide will be at this particular period has presumably gained for it its name ‘The Dodger’.” 

The predicted times of high and low tides for Adelaide Outer Harbor on 10-11 August 2000 are given in Table 6.1.

	Date
	Time
	Height (m)
	
	Table 6.1  Instead of the normal sequence of highs and lows, the tidal level remained virtually unchanged from 2114 on 10 August until 0357 on the following day. The next high tide was not reached until nearly 11 hours later.

	10
	0304
	1.2 (Low)
	
	

	10
	1108
	2.2 (High)
	
	

	10
	2114
	1.4 (Low)
	
	

	11
	0248
	1.5 (Dodge)
	
	

	11
	0357
	1.5 (Dodge)
	
	

	11
	1415
	2.2 (High)
	
	

	11
	2158
	1.1 (Low)
	
	


This is put in context with the August, 2000 time series of sea level at Adelaide plotted below, with the dodge period encircled. Over most of the month the tidal behaviour is typical of semi-diurnal regimes worldwide. It is only the near-identity of the M2 and S2 amplitudes that give it its unique character at neaps. 

The Canadian Department of Fisheries and Ocean website glossary defines a very similar phenomenon, which they call a "vanishing tide", defined thus: "the phenomenon occurring when a high and low water 'melt' together into a period of several hours with a nearly constant water level. The tide is in the diurnal category but is known as a 'vanishing tide'." An example of this may be found at Honiara, Solomon Islands, which exhibits a very flat period at neaps (Figure 6.3). Honiara has a diurnal regime (dominated by K1 and O1). During 5/6 August 2000, the predicted sea level variation remained within a 10 cm range for about nine hours, as opposed to a range at springs of about 90 cm.  The moon entered its first quarter on 7 August.
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Figure 6.3  Sea levels at Adelaide and Honiara. Intervals with virtually no tidal variation are encircled. In Adelaide these intervals are called the "Dodge Tide".

Doodson Numbers see § 2.3

earth tide 

A deformation of the solid earth in response to the gravitational tidal forces of the sun and moon. The largest effect is the semi-diurnal deformation nearly in phase with the transit of the moon; its amplitude is less than 20 cm. Being nearly in phase with the tide-generating potential, and the absence of the resonance and dynamic features of ocean flow, mean that in some respects earth tides are closer to the Equilibrium Tide than are ocean tides. The solutions to the equations of motion for an elastic, spherical earth can be written in the form of vertical and horizontal displacements, plus a change in potential due to the deformation. Each of these is a simple linear function of the tide-generating potential, whose coefficients are known as the "Love numbers", h2 (vertical displacement coefficient), l2  (horizontal displacement coefficient),  and k2 (coefficient of change in the potential). Note that these refer to the deformation of the solid earth with no ocean. A similar set of corrections to the ocean tides are described in self-attraction and loading.

ebb see streams

ecliptic see celestial sphere
epoch

The time origin used to reference the longitudes of astronomical features such as the lunar perigee. The word epoch is also used in at least two other very different ways in tidal work – as a synonym for phase lag, and for a period of time (usually a nodal cycle) over which a mean is calculated as the basis for a tidal datum.  

equilibrium tide see § 1.3
equilibrium phase see § 1.3
eustatic sea level change
Global changes of sea level taking place over many years. Some authors associate "eustatic" with ocean volume changes, others with globally synchronous changes. However, such ocean surface displacements are now understood to be spatially irregular (in some areas, even opposing the global trend).

evection and variation 

Two of many perturbations to the moon’s orbit caused by changes in the solar gravitational potential during the course of the orbit, giving rise to the evectional (1, 1, 1, 2 and 2) and variational (1, 2) constituents. 

establishment of a port

Definitions vary, but it is essentially the same as the more modern term, lunitidal interval.

extended harmonic method

This term usually refers to an tidal analysis of 114 or more terms. Prior to the work of Zetler and Cummings (1967) and Rossiter and Lennon (1968), tidal harmonic analyses generally contained 64 or less constituents. Using spectral analysis, these authors independently identified an additional 54 constituents (individual terms differed between the two) which subsequently became a standard part of tidal analyses. The authors found that the reduction in the variance of the residuals following the inclusion of the additional terms was less than 10%.

flood see streams
form factor

A factor used to characterise the tides in an area as being predominantly diurnal, semi-diurnal, or mixed. Usually computed as (HK1 + HO1)/ (HM2 + HS2), where H is the amplitude of the constituent in the subscript. The cut-off points are usually given as follows: less than 0.25, semidiurnal; 0.25 to 3.0, mixed; greater than 3.0, diurnal.  

fortnightly tides 

In most parts of the world, the tides go through a fortnightly "spring-neap" cycle, as described in Section 3.2. These are beat phenomena rather than actual harmonics. There are, however, harmonics arising directly from the tide-generating potential which have a period of a fortnight (two weeks), the most important being Mf. The harmonic MSf arises from interactions occurring in shallow water (see § 3.3).

geoid see geopotential

geopotential 

A gravitational field can be characterised by a “potential”, the negative gradient of which defines the strength and direction of the force exerted upon a mass within the field. The earth’s gravitational potential is called the geopotential. A geopotential surface is one whose potential is everywhere equal. In the absence of planetary rotation and forces other than earth’s own gravity, the ocean would be at rest and its surface would conform to a geopotential surface known as the “geoid”. Such forces include wind stress, density variations, and large-scale ocean waves. These may cause the mean sea level to differ (locally but semi-permanently) from the geoid by as much as a metre. The well-known 20 cm "head" of sea level between the Gulf of Panama and the Caribbean, caused by the difference in water densities, essentially means that the geoid passing through mean sea level on the Caribbean side passes 20 cm below mean sea level on the Pacific side.

harmonic constants see constants

high water full and change (HWF&C)

Despite the name, HWF&C refers to a time interval, not a tidal plane. It is a somewhat antique term essentially synonymous with lunitidal interval. The “full and change” refers to full and new moon - the only part of the lunar cycle when it was useful. As with lunitidal interval, its purpose was to indicate the approximate delay following noon or midnight of the next high tide. 

higher high water (HHW), highest astronomical tide (HAT), etc: see § 5.9
Indian spring high/low water see § 5.9

hydrodynamic equations of tidal motion see § 1.4
inference of constituents see § 5.5
internal tide 

The ocean usually has a less dense upper layer overlying the much deeper, denser waters. Waves known as “internal waves” often occur on the interface between two such layers. If the interface is gradual, the direction of wave propagation may possess a vertical component, trapped by refraction within upper and lower limits. Internal waves are usually caused by flow in the lower layer moving over an obstacle such as an undersea ridge, with semi-diurnal tidal flows into and out of a fjord being a typical example. When this happens, a semi-diurnal internal wave, or “internal tide” is produced. Although these waves do not significantly affect the sea surface, they may be detected by satellite as bands of surface slicks due to the convergence of surface currents that are produced (Figure 6.4).    

[image: image64.jpg]



Figure 6.4  A NASA satellite photo showing internal waves. According to the website, "In the Sulu Sea between the Philippines and Malaysia, sunglint highlights delicate curving lines of internal waves moving to the northeast toward Palawan Island." Photo credits: NASA.

http://earthobservatory.nasa.gov/Newsroom/NewImages/images.php3?img_id=15334

intertidal zone  

The part on a beach that lies between high and low tidal levels – sometimes exposed, and sometimes inundated, depending on the tide. For legal purposes, the high and low waters may be given more precise definitions, such as “mean high water” and “mean low water”. 

inverse barometer effect see § 5.2
kappa phase see § 2.1
king tide 

Term used colloquially in some parts of Australia and elsewhere for a seasonal high tide often combined with onshore winds, or any exceptionally high tide, in some cases due to a storm surge (see storm surge).

lagging of the tide see lunitidal interval

Loading Love numbers see self-attraction and loading
Love numbers see earth tide
low water (LW), lower low water (LLW), lowest astronomical tide (LAT), etc.: see tidal planes 

lunisolar tide

A tidal constituent whose origins are a combination of lunar and solar – that is, by coincidence, there being identical forcing frequencies stemming from both sources. The most important lunisolar tides are K1 and K2. A shallow-water tide, Msf, arises from the interaction between M2 and S2.  

lunitidal interval

The time interval between the moon’s transit (overhead or below) and the following high tide. On the day of new or full moon, the moon’s transit coincides with the sun’s, providing a simple way to estimate the lunitidal interval – it is the number of hours after noon of the next high tide on that day. Formulae are sometimes given – for example, if the local phase lag of the moon’s primary constituent, M2, is known, multiply it by 0.0345 (0.0345 being equal to the period of M2 , 12.42 hours, divided by 360(). At Auckland, the phase lag of M2 is 204( so the interval is seven hours according to the formula. A look at a tide table for Auckland reveals that at new and full moons, the first high tide after noon is, indeed, usually at about 7 p.m. At Outer Harbor, Adelaide, the M2 phase is 106.6(, so according to the formula, the lunitidal interval is 3.7 hours. The formula (and in fact the concept of lunitidal interval) is of little practical value for locations where M2 is not the dominant constituent. At Adelaide, where M2 and S2 share equal pre-eminence, the actual high tide at new and full moons comes about 4½  to 5½ hours after noon (and midnight) – essentially an average between the lunitidal and “solar-tidal” intervals (the latter being 6 hours). Note: for reasons inscrutable to the practical man, some authors define lunitidal interval in terms of the prime meridian and local high water.      

Since the lunar day is about 50 minutes longer than a solar day, the lunar wave arrives about 50 minutes later each day at a typical semi-diurnal port. On either side of a spring tide, this implies that the time of high tide first catches up with and then passes the lunitidal interval. Mariners (naturally) had a name for these decreasing and then increasing time delays: the "lagging" and "priming" of the tides, respectively.

mean high water (MHW), mean sea level (MSL), etc.: see tidal planes 

Merian's formula see seiche

meteorological tides see radiational tides

mixed tide see form factor

month

There are four types of month used in astronomy and relevant to the tidal gravitational potential. The moon completes a single orbit of the earth in a sidereal month, equal to 27.3217 days (mean solar days). During this time, the perigee has moved about 3( in its rotation of earth; consequently the time between the moon successively being at perigee is 27.5546 months (the anomalistic month). Similarly, during this time the lunar ascending node will have undergone a regression of about 4.5( (thereby reducing the length of time between successive passages of the moon through the ecliptic), thus defining the slightly shorter nodical month of 27.2122 days. A synodic month is the time between successive full moons. Because the earth progresses in its orbit around the sun while the moon is orbiting the earth, it takes longer than a sidereal month for the lunar phases to repeat. The synodic month is 29.5307 days.    

NGWLMS see § 5.1
nodal cycle see § 3.4
nodal factor/phase see § 3.4
nonlinear tides see § 3.3
orthotide see § 4.3
overtide see § 3.3
perigeal cycle see perigee

perigean tide

Tides of increased range occurring monthly as the result of the Moon being in perigee. In some places (notably the Bay of Fundy) this modulation may equal that of the spring-neap cycle. The moon is at perigee every 27.5546 days, but the time between full moons is 29.5307 days. Thus, these two “beat” in and out of phase every 412 days. Since there are two spring tides per period between full moons, the perigean tide and the spring tides come into phase every 206 days. In terms of tidal analysis, the largest constituent due to the ellipticity of the lunar orbit is N2. There are also constituents associated with the ellipticity of the solar orbit, but because it is more circular than the lunar orbit (i.e., its eccentricity is less than a third), these constituents are much smaller. The opposite situation is known as apogean.

perigee

In the moon’s elliptical orbit around the earth, its point of closest approach is known as perigee. Over time, the orientation of the orbit within the orbital plane gradually rotates. As a consequence, the perigee circles the earth every 8.85 years, a period known as known as the perigeal cycle (not to be confused with perigean tide), and designated “p” in tidal literature. This is distinct from the nodal cycle, in which the orbital plane itself rotates. The moon is at perigee every 27.5546 days.  

perihelion 

The point of closest approach in the earth’s orbit around the sun. The sun is at perihelion every 365.2596 days – currently this nearly coincides with the start of the year (as it happens, this is midsummer in the southern hemisphere). The perihelion itself circles the sun every 20,942 years, in a rotation analogous to the perigeal cycle. The period is often designated "p( " or "p1" in tidal literature.

[image: image65.jpg]



Figure 6.5  Funafuti, Tuvalu – a photo of the southernmost islands of the atoll, viewed from the southeast. The nation of Tuvalu is comprised of nine coral atolls, the highest reaching an altitude of five metres. Tide gauges operating in Tuvalu since the late 1970's have recorded a moderate rise in sea level (less than 3 cm), but spring tides inundate low-lying areas in the early part of most years when the earth is at perihelion. Photo credit: Allan Suskin.

phase lag see § 2.4
pole tide

small tide of varying period (approximately 433 days, but varying) associated with changes in the earth axis of rotation known as the “Chandler Wobble”. Ultimately, it can be said to fall in the class of radiational tides, since the precession has been shown to be caused by oceanographic and meteorological variations, which redistribute water masses. This precession is independent of, and much smaller than, the precession of the equinoxes, which has a period of 26,000 years (see year). The largest reported pole tide is 30 mm, from the Gulf of Bothnia.    

primary port see standard port

prime meridian

The meridian of 0( longitude, known also as the Greenwich Meridian. 

priming of the tide see lunitidal interval

quadrature

The condition whereby the angle formed by the sun, earth, and moon is 90(. See also syzygy. 

radiation stress

radiational tides 

A quasi-periodic rise and fall of sea level caused by meteorological variability, hence also known as “meteorological tides”. Semi-diurnal radiational tides in the tropics are thought to be due to semi-diurnal fluctuations in surface barometric pressure forced at diurnal period at the top of the atmosphere (sometimes called "atmospheric tide"). Diurnal radiational tides are often caused by land/sea breezes or solar heating (note that neither of these forcing functions are purely sinusoidal in time). Monsoonal winds may cause semi-annual radiational tides on some coastlines. Annual heating of the atmosphere and redistribution of air mass can both cause annual radiational tides. 

range

The difference between the maximum and minimum water levels during a typical tidal cycle.

Rayleigh criterion see § 5.4
rectilinear currents see streams

red tide 

A discolouration of lake or sea water caused by an algal bloom having very little to do with tides.

regression of lunar nodes

Since the clockwise or western rotational direction of the lunar nodes around the ecliptic is opposite to that of most other rotations and orbits of the solar system, it is said to be in regression.

relative sea level see absolute sea level

residuals see § 5.2
resonance

For any gulf or other body of water, there are certain resonant frequencies. These depend primarily on its dimensions (breadth and depth). If forced at the resonant frequency, water motions are amplified. For example, Spencer Gulf in South Australia is "tuned" to K1. When the K1 wave enters the Gulf, its amplitude is about 3.3 times larger than P1 (for which the Gulf is less well-tuned). The ratio increases up the Gulf, going from 3.3 to about 5.0 at the head (top end). The "ability" of Spencer Gulf to discriminate between two close frequencies (their periods differ by less than 8 minutes) attests to the fact that ocean systems are relatively lightly damped. Perhaps the most famous such case is the Bay of Fundy, also mentioned in the context of perigean tides. 

response method see § 5.9
revolution without rotation

This intriguing phrase represents a useful simplification which is used in some elementary texts on tides, in their discussion of the balance of gravitational and centrifugal forces. According to that approach, the effect of the earth's daily rotation is ignored, leaving only the centrifugal force associated with "revolution", ie the earth-sun or earth-moon orbit. Actually, the term "ignored" is not completely correct. The diurnal rotation is accounted for in the gravitational field at the earth's surface (a vector field), which governs mean sea level.
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Figure 6.6  Five successive views of the earth from above the North Pole. Note that the path traced out by a point on the earth, symbolised by a small black circle, never closes on itself. In fact, the waviness is exaggerated - the actual path would appear nearly straight (see text).
If an observer in space above the North Pole watched an illuminated point on the surface of the earth (say, for example, at Kuala Lumpur), the point would trace a wavy line as in Figure 6.6 – not a series of closed loops as one might expect. This is because the earth travels through a distance of about 201 earth diameters every day on its orbit around the sun. For illustration, Figure 6 is drawn as if the distance were only eight earth diameters, so the true path would appear far less wavy than shown. 

rip

A narrow shearing current flowing offshore through the surf zone. Sometimes (misleadingly) called a rip tide. Rips are a part of a circulation cell forced by surface wave transport, and have little to do with tides. 

rotary current see § 5.8 and streams
satellite altimetry

Remote sensing of the ocean surface height by satellite-mounted microwave radar. Techniques have been developed for extracting the tidal constants for the larger constituents from the satellite data, despite its sampling interval which is generally about twenty times longer than the semi-diurnal period, thus providing an accurate global ocean database of tidal constants, which was previously restricted to areas close to coastal tide gauges and to numerical models which were poorly constrained over wide areas of the ocean surface. 

SEAFRAME see § 5.1
secondary port

In the context of tide tables, a port for which predictions are required, but for which insufficient data for a reliable harmonic analysis is available and hence, predictions from the nearest standard port (see standard port) must be used (with suitable corrections). Also called a subordinate port. See also inference of constituents (§ 5.9).

secular trend 

Long-term trend in any time series, such as one of sea level. “Secular” is usually used to imply a background trend – for example, the trend over several decades of annual sea level – but with the understanding that the secular trend may vary if the length of the time series is significantly extended.    

seiche

A standing wave in an enclosed or semi-enclosed body of water set off by weather, seismicity, or incident ocean waves. Seiches are primarily a resonance phenomenon, whose wavelength and period are determined by the geometry. A characteristic feature is the existence of  "nodes" - points of minimum water level disturbance, but greatest horizontal currents - and "antinodes", where the reverse occurs. Closed basins (e.g. Lake Geneva) have antinodes at both ends, whereas open basins (e.g., Bay of Fundy) have an antinode at the nearshore end and a node at the open ocean. The Bay of Fundy is frequently cited as an example because it has a natural resonance period close to semidiurnal, and hence the tidal range at the upper end is large due to resonance. The fundamental modes of closed- and open-basin seiches have periods of 2L(gH)-1/2 and 4L(gH)-1/2 respectively, where L is the length of the harbour or embayment, H is the mean depth, and g is the gravitational acceleration (9.8 m/s2). The factor (gH)1/2 is the shallow-water wave speed. Higher order seiches of shorter period are also possible, in which case the two formulas must be divided by n and (2n-1) respectively, with n=1,2,3.. in both cases. The formula for the closed-basin mode is known as "Merian's formula".

seismic sea wave see tsunami 

self-attraction and loading

The description of the tide-generating potential (§ 1.2) was simplified in several ways, two of which were by ignoring the continuous re-distribution of mass that occurs as the water moves in response to the tidal forces, and by ignoring the warping of the elastic solid earth surface as the water level varies. These effects are commonly combined into the term "self-attraction and loading" (SAL). For each constituent, the global tide is represented as a summation over spherical harmonics. Solutions to the tidal forcing equations are displacements proportional to the "loading Love numbers" (h'n, l'n, and k'n). The vertical and horizontal displacements are given by h'n and l'n respectively, and the effect on the tide-generating potential is given by k'n. This set of numbers forms the basis for modern computations of SAL. Some early ocean tide models attempted to account for SAL or loading alone by subtracting where is the water level anomaly, (negative when water level is less than mean), and  typically equalled 0.08 for SAL and 0.03 for loading alone.  The advent of accurate global tide models has enabled scientists to establish far more accurate models of SAL which can estimate the appropriate adjustment at each new time step, for each geographic point, for each tidal constituent included in the model (Figure 6.7). See also Ray (1998) and Baker (1984).
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Figure 6.7  The "SAL tide" for M2: (top) Amplitude contours in mm; (bottom) phase lag (degrees, UT). The phase contours are broadly similar to those seen on maps of the global M2 tide. Graphic courtesy of Richard Ray. (Note that the SAL function is mathematically defined over land, but is not physically meaningful except over oceans and large lakes.)
semi-diurnal tides see species

set (of current) see streams

sidereal day see day

slack water see streams 

solstitial tides 

Tides occurring near the times of summer and winter solstice, when the sun is overhead at the Tropic of Cancer or Capricorn. If the associated constituents (K1 and P1) were predominant, the tide would be diurnal, with an annual modulation at their beat frequency, i.e. at a period equal to the tropical year. This being a rarity, the term is of minor currency. These tides seem to have a stronger claim to the term “tropic tide” than those that inherited it, but at least “solstitial” is unambiguous, if tongue-twisting.  

species

The Doodson number ia for each constituent defines its “species”. Those of period half-monthly and longer are assigned ia = 0; for periods approximately diurnal, ia = 1; for periods approximately semi-diurnal, ia = 2; for periods approximately ter-diurnal (one-third diurnal), ia = 3; quarter-diurnal, ia = 4; and sixth-diurnal, ia = 6. The different species form distinct groups in a line spectrum. 

speed see Section 2.4

spring high water see tidal planes

spring low water see tidal planes

spring tides see fortnightly cycle 

stand of tide see streams

standard port

In the context of tide tables, a port for which sufficient data is available in order for a set of official  predictions to be produced. Also known as a "primary port", especially in North America.

stilling well see tide gauges

storm surge 

The temporary piling-up of water at the coast due to onshore wind and/or low barometric pressure. A storm surge combined with high tide can be particularly dangerous, and even more so in the presence of wind-generated waves. Negative surges (lowered water levels) are also possible. There is a close association between tides and storm surges - the impact of a surge often depends on the state of the tide, and the surge and tide waves may interact over the shelf or as they move up an estuary.

Storm surges are most often caused when a tropical cyclone (also known as a "hurricane" or "typhoon"), generated over the open ocean, moves across the shallower water of the continental shelf. The cyclonic wind circulation is counter-clockwise in the northern hemisphere and clockwise in the southern hemisphere. The strongest onshore winds - and thus, the shoreline with the highest risk of water set-up - is thus to the right (left) of the direction in which the storm is moving, in the northern (southern) hemisphere. 

On 2 April 2000, a Tropical Cyclone Tessi struck northeast Queensland, Australia (Figure 6.8), bringing damage to property and uprooting trees. The highest winds, flooding, and greatest damage, was reported at Townsville, to the south of the point of landfall. 

	Figure 6.8  This map of far north Queensland and the predicted track of TC Tessi was prepared by the Joint Typhoon Warning Center, USNPMOC, Hawaii (reproduced with permission). Times are in "Z" (i.e., UT). The dashed line encircles the 24 hour warning area.
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Sea levels and weather data recorded at Cape Ferguson, 20 km south of Townsville, is plotted in Figure 6.9. Fortuitously, the peak gusts and storm surge (sea level residual) nearly coincided with low tide. TC Tessi stalled and veered after the map was prepared - landfall occurred eight hours later, and about 80 km north of the point predicted on the map. Wind direction at the time of maximum speeds was from the southeast (as expected); but by the end of the day it had swung around and was blowing from the northeast. The arrival of the peak gusts after the lowest pressure is a little unusual. It may be due to the cyclone veering and stalling before making landfall, or perhaps the coastal topography.
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	Figure 6.9  Weather and water level data recorded by the National Tidal Centre (Bureau of Meteorology) SEAFRAME gauge at Cape Ferguson. Barometric pressure and peak gust are recorded on the hour; sea level is recorded at six minute intervals. Time is UT.


If the alongshore progression of a tropical cyclone is close to the speed of a long wave over the local shelf, resonance may occur and a shelf wave generated. This can dramatically enhance the size of the storm surge. The storm surge is thus a response to a combination of factors - high winds piling up water against the coast, the inverse barometer effect, and the resonant shelf wave.

strand line: The high water mark on a shoreline, typified by the presence of flotsam and jetsam.
streams 

Same as tidal currents, although some hydrographic authorities use "streams" to refer exclusively to the tidal currents along the principal directions of ebb and flood (which may not differ by 180(, but usually do!). The set of the current is the direction in which it flows. On the incoming tide, the streams are said to be in flood; the outgoing streams are in ebb. The stand of the tide occurs near high and low water when the water level is unchanging. The analogous term for streams is the slack water that may or may not occur at the same time. Tidal streams which flow back and forth along a line are rectilinear, whereas those that follow an elliptical circuit (due to the coriolis force) are rotary (see § 5.8). The ellipse traced out by a tidal current vector in a rotary flow regime is called a tidal ellipse. The principal directions of ebb and flow can be computed by the methods of § 5.8.

synodical month see month

syzygy 

The condition whereby the sun, earth and moon are in alignment. See also quadrature. The term syzygy is surely used far less often by tidallists than by players of word games.

TASK-2000 see tide software packages

ter-diurnal see species

thermocline 

A layer in which the temperature decreases significantly (relative to the layers above and below) with depth. The principal ones are designated diurnal, seasonal, and main thermocline. A common feature of thermoclines is the presence of internal tides.   

tidal bore 

A tidal bore is a moving hydraulic jump caused by tidal propagation up a river. Hydraulic jumps are familiar as the abrupt changes in water level that occur, for example, in a gutter after a heavy rain. In that case, they are stationary, whereas others, such as tidal bores, may propagate as a special type of wave. One of the world’s largest tidal bores, on the Qiantang (formerly spelled “Tsien Tang”) River near Hangchow, China, has been known to reach nearly ten metres (Figure 6.10).

	"Not all bores are boring."

Figure 6.10  Tidal bore on Qiantang River. Photo credit: Dr. J.E. Jones, Proudman Oceanographic Institute, UK. 
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tidal datum see § 5.9
tidal plane see § 5.9

tidal prism 

Where the tide moves up and down the lower reaches of a river,  a volume, known as the tidal prism, of fresh water is displaced each tidal cycle. The tidal prism takes its name from the fact that the front between fresh and salt water is often inclined to the vertical, with the downstream edge of the fresh water riding over the salt. 

tidal wave 

The response of the ocean to the gravitational forcing of the sun and moon includes the generation of various types of large-scale waves, generically called tidal waves. Sometimes this term is used incorrectly as a synonym for tsunami. 

tidal pumping

This term is used in various contexts, including those of coastal aquifers and the bringing of nutrient-rich offshore water into the shallower regions. In the former case, the rise and fall of the tide is often accompanied by a delayed and reduced oscillation of water level in nearby wells. The latter context usually involves a relatively large flood tide bringing water up and into a bay or other semi-enclosed area, where it mixes with water from previous high tides before draining more slowly back to the open ocean. Submarine canyons across the continental shelf may also cause a rectified flow with a net increase of nutrients in the upper layer.

	Time and tide: the English word for "time" goes back to an ancient Indo-European form used about six thousand (6000) years ago: "dai-". By the time people were speaking Germanic, about two thousand years ago, "dai-" was being used in two Germanic words: "tídiz" (meaning "a division of time", and "tímon" (meaning something like "an appropriate time [at which to do something]"). The "tídiz" word became Old English "tíd" and then finally "tide".

- Adapted from Word Lore, http://hea-www.harvard.edu/ECT/Words/.


time scales see § 5.9
tropic tides 

At latitudes near the maximum declination of the moon (which varies between 18.3( and 28.6( latitude north and south over the course of the nodal cycle) the diurnal tides are greatest when the moon is near maximum declination. These so-called “tropic tides” are the equivalent of the more common spring tides, with the beat frequencies being diurnal (eg. O1 and K1) instead of semi-diurnal. The beat period for O1 and K1 is 13.66 days. The tides at Karumba, Queensland, which are dominated by O1 and K1, exhibit this pattern (Figure 6.11). The term may be slightly misleading in that the “Tropics” on the earth are the latitudes (23.5( where the sun’s declination reaches its maximum (see solstitial tides); nevertheless, the Tropics are also the maximum declinations of the moon when averaged over a nodal cycle. The range (peak to peak distance between high and low tide) at the time when these diurnal tides are greatest is known as the tropic range (vide).
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Figure 6.11  Predicted tidal heights at Karumba, Queensland (latitude 17( 29' S) over a one month period. Full and new moons are indicated. The beat cycle is caused by O1 and K1.

tropic ranges see tropic tides

tsunami 

Not a tidal term, but included because it is sometimes incorrectly called a “tidal wave”. A tsunami is an ocean wave caused by a disturbance such as an undersea earthquake or landslide, whose wavelength is long compared to the water depth.  

twenty-nine day analysis

The analysis of 29 days of tidal observations. 29 days contains a near-integral multiple of the periods of the four major constituents, M2 (period = 0.518 d), S2 (0.500 d), O1 (1.076 d), K1 (0.997 d). Viz.:  29/0.518 = 55.98, 29/0.500 = 56, 29/1.076 = 26.95, 29/0.997 = 29.09. For this reason time-stepping numerical models driven at the boundary by these four constituents are sometimes run for 29 days (following spin-up). Near-integral multiples also occur at 59, 355, and 738 days.

universal time (UT) see § 2.5
upwelling 

In the context of tides, upwelling (upwards movement of water) can occur as a result of periodic flow over uneven topography, especially submarine canyons on the continental shelf. Upwelling is more often associated with alongshore winds combined with the coriolis effect, or spatially divergent wind fields over the open ocean, but tidal upwelling can also lead to significant flux of nutrients into the photic zone.

Van de Casteele test

A test designed to detect flaws in the mechanical operation of tide gauge chart recorders. A measurement is taken of the positive distance between a fixed point near the top of the gauge, down through the stilling well to water level. The sum of this distance, which is a maximum at low tide, and the tide gauge reading should be constant through a full tidal cycle. The sum when plotted against the measured distance (with the latter plotted on the vertical axis) should therefore be a vertical line. Deviations from the straight line can be interpreted as faults such as backlash in the gauge mechanism, scaling error, etc. A full description of the test and interpretation is available online from UNESCO/IOC Manual 14:

http://www.pol.ac.uk/psmsl/manuals/ioc_14i.pdf.

vanishing tide see dodge tide

variational see evection and variation

year

Four different types of year are of significance to tides. The sidereal year is the period taken by earth complete a single orbit of the sun, 365.2564 mean solar days (msd). The tropical year, which is measured in relation to the beginnings of the various seasons (specifically, successive vernal equinoxes), is slightly shorter than the sidereal year as a consequence of precession. The axis of the earth is tilted at about 23½( degrees to the perpendicular of the orbital plane.  The axis slowly precesses about the perpendicular, in the manner of a “sleeping top”. If it completed a single precession in one day, then we would experience four seasons in a single day. Of course, this is not the case – 26,000 years are required for each precession. This means that the seasons advance 1/26,000th part per sidereal year faster than they would without precession, and the tropical year is therefore only 365.2422 msd. (Note that this precessional motion is independent of the 20,942 year perihelion cycle.) Finally, there is an anomalistic year, which is the period between successive perihelions. Just as the anomalistic month is slightly longer than a sidereal month, the anomalistic year, 365.2596 msd, is slightly longer than a sidereal year. Of the three types of year, the anomalistic is of greatest importance in tides. The longitude of the sun (h) undergoes a complete cycle in one tropical year. The final type of year, the Julian year, is a rather artificial construct in comparison to the others. It is defined as 365.25 days.

Chapter 7 

Tables of harmonic data

Table 7.1   Harmonic constants. The following list contains nearly 350 constants from a number of sources. 

	Lunar time
	Solar time
	

	ia
	ib
	ic
	id
	ie
	if
	ia
	ib
	ic
	id
	ie
	if
	
	Speed (/hour
	Name
	Notes

	0
	0
	1
	0
	0
	0
	0
	0
	1
	0
	0
	0
	0
	0.0410686
	Sa
	a,p; 

	0
	0
	2
	0
	0
	0
	0
	0
	2
	0
	0
	0
	0
	0.0821373
	Ssa
	p;

	0
	0
	2
	0
	1
	0
	0
	0
	2
	0
	1
	0
	0
	0.0843437
	-
	

	0
	0
	3
	0
	0
	-1
	0
	0
	3
	0
	0
	-1
	0
	0.1232040
	-
	

	0
	1
	-2
	1
	-1
	0
	0
	1
	-2
	1
	-1
	0
	0
	0.4693147
	-
	

	0
	1
	-2
	1
	0
	0
	0
	1
	-2
	1
	0
	0
	0
	0.4715211
	-
	

	0
	1
	-2
	1
	1
	0
	0
	1
	-2
	1
	1
	0
	0
	0.4737275
	-
	

	0
	1
	0
	-1
	-1
	0
	0
	1
	0
	-1
	-1
	0
	0
	0.5421683
	-
	

	0
	1
	0
	-1
	0
	0
	0
	1
	0
	-1
	0
	0
	0
	0.5443747
	Mm
	p;

	0
	1
	0
	-1
	1
	0
	0
	1
	0
	-1
	1
	0
	0
	0.5465811
	-
	

	0
	1
	0
	0
	0
	0
	0
	1
	0
	0
	0
	0
	0
	0.5490165
	-
	

	0
	1
	0
	1
	0
	0
	0
	1
	0
	1
	0
	0
	0
	0.5536584
	-
	

	0
	1
	0
	1
	1
	0
	0
	1
	0
	1
	1
	0
	0
	0.5558648
	-
	

	0
	2
	-2
	0
	-1
	0
	0
	2
	-2
	0
	-1
	0
	0
	1.0136854
	-
	

	0
	2
	-2
	0
	0
	0
	0
	2
	-2
	0
	0
	0
	0
	1.0158958
	Msf
	p;

	0
	2
	-2
	0
	1
	0
	0
	2
	-2
	0
	1
	0
	0
	1.0181022
	-
	

	0
	2
	0
	-2
	0
	0
	0
	2
	0
	-2
	0
	0
	0
	1.0887494
	-
	

	0
	2
	0
	0
	0
	0
	0
	2
	0
	0
	0
	0
	0
	1.0980331
	Mf
	p;

	0
	2
	0
	0
	1
	0
	0
	2
	0
	0
	1
	0
	0
	1.1002395
	-
	

	0
	2
	0
	0
	2
	0
	0
	2
	0
	0
	2
	0
	0
	1.1024459
	-
	

	0
	3
	-2
	1
	0
	0
	0
	3
	-2
	1
	0
	0
	0
	1.5695542
	-
	

	0
	3
	-2
	1
	1
	0
	0
	3
	-2
	1
	1
	0
	0
	1.5717606
	-
	

	0
	3
	0
	-1
	0
	0
	0
	3
	0
	-1
	0
	0
	0
	1.6424078
	-
	

	0
	3
	0
	-1
	1
	0
	0
	3
	0
	-1
	1
	0
	0
	1.6446142
	-
	

	0
	3
	0
	-1
	2
	0
	0
	3
	0
	-1
	2
	0
	0
	1.6468206
	-
	

	0
	4
	-2
	0
	0
	0
	0
	4
	-2
	0
	0
	0
	0
	2.1139289
	-
	

	0
	4
	-2
	0
	1
	0
	0
	4
	-2
	0
	1
	0
	0
	2.1161353
	-
	

	0
	4
	0
	-2
	0
	0
	0
	4
	0
	-2
	0
	0
	0
	2.1867825
	-
	

	0
	4
	0
	-2
	1
	0
	0
	4
	0
	-2
	1
	0
	0
	2.1889889
	-
	

	1
	-4
	2
	1
	0
	0
	1
	-5
	3
	1
	0
	0
	0
	12.3827651
	-
	

	1
	-3
	0
	2
	-1
	0
	1
	-4
	1
	2
	-1
	0
	270
	12.8520798
	-
	

	1
	-3
	0
	2
	0
	0
	1
	-4
	1
	2
	0
	0
	270
	12.8542862
	2Q1
	p;

	1
	-3
	2
	0
	-1
	0
	1
	-4
	3
	0
	-1
	0
	270
	12.9249334
	-
	

	1
	-3
	2
	0
	0
	0
	1
	-4
	3
	0
	0
	0
	270
	12.9271398
	1
	p;

	1
	-3
	3
	0
	0
	0
	1
	-4
	4
	0
	0
	0
	0
	12.9682084
	-
	

	1
	-2
	-3
	0
	0
	0
	1
	-3
	-2
	0
	0
	0
	0
	13.2708131
	-
	

	1
	-2
	0
	0
	-1
	0
	1
	-3
	1
	0
	-1
	0
	180
	13.3918126
	-
	

	1
	-2
	0
	0
	0
	0
	1
	-3
	1
	0
	0
	0
	180
	13.3940190
	-
	

	1
	-2
	0
	1
	-1
	0
	1
	-3
	1
	1
	-1
	0
	270
	13.3964545
	-
	

	1
	-2
	0
	1
	0
	0
	1
	-3
	1
	1
	0
	0
	270
	13.3986609
	Q1
	p;

	1
	-2
	2
	-1
	-1
	0
	1
	-3
	3
	-1
	-1
	0
	270
	13.4693081
	-
	

	1
	-2
	2
	-1
	0
	0
	1
	-3
	3
	-1
	0
	0
	270
	13.4715145
	1
	p;

	1
	-1
	0
	0
	-1
	0
	1
	-2
	1
	0
	-1
	0
	270
	13.9408292
	-
	

	1
	-1
	0
	0
	0
	0
	1
	-2
	1
	0
	0
	0
	270
	13.9430356
	O1
	p;

	1
	-1
	0
	0
	1
	0
	1
	-2
	1
	0
	1
	0
	90
	13.9452420
	-
	

	1
	-1
	0
	1
	0
	0
	1
	-2
	1
	1
	0
	0
	180
	13.9476774
	-
	

	1
	-1
	2
	0
	0
	0
	1
	-2
	3
	0
	0
	0
	90
	14.0251729
	MP1
	p;

	1
	-1
	2
	0
	1
	0
	1
	-2
	3
	0
	1
	0
	270
	14.0273793
	-
	

	1
	0
	0
	-1
	0
	0
	1
	-1
	1
	-1
	0
	0
	90
	14.4874103
	-
	

	1
	0
	0
	0
	-1
	0
	1
	-1
	1
	0
	-1
	0
	0
	14.4898457
	-
	

	1
	0
	0
	0
	0
	0
	1
	-1
	1
	0
	0
	0
	180
	14.4920521
	M1
	b,p;

	1
	0
	0
	1
	0
	0
	1
	-1
	1
	1
	0
	0
	90
	14.4966939
	NO1
	

	1
	0
	0
	1
	1
	0
	1
	-1
	1
	1
	1
	0
	90
	14.4989004
	-
	

	1
	0
	2
	-1
	0
	0
	1
	-1
	3
	-1
	0
	0
	0
	14.5695475
	(1
	c,p;

	1
	0
	2
	-1
	1
	0
	1
	-1
	3
	-1
	1
	0
	0
	14.5717540
	-
	

	1
	1
	-3
	0
	0
	1
	1
	0
	-2
	0
	0
	1
	270
	14.9178647
	(1
	p;


	1
	1
	-2
	0
	-1
	0
	1
	0
	-1
	0
	-1
	0
	90
	14.9567249
	-
	

	1
	1
	-2
	0
	0
	0
	1
	0
	-1
	0
	0
	0
	270
	14.9589314
	P1
	p;

	1
	1
	-1
	0
	0
	0
	1
	0
	0
	0
	0
	0
	180
	15.0
	S1
	d,p;

	1
	1
	0
	0
	-1
	0
	1
	0
	1
	0
	-1
	0
	270
	15.0388622
	-
	

	1
	1
	0
	0
	0
	0
	1
	0
	1
	0
	0
	0
	90
	15.0410686
	K1
	p;

	1
	1
	0
	0
	1
	0
	1
	0
	1
	0
	1
	0
	90
	15.0432750
	-
	

	1
	1
	0
	0
	2
	0
	1
	0
	1
	0
	2
	0
	0
	15.0454815
	-
	

	1
	1
	1
	0
	0
	-1
	1
	0
	2
	0
	0
	-1
	270
	15.0821353
	(1
	e,p;

	1
	1
	2
	0
	0
	0
	1
	0
	3
	0
	0
	0
	270
	15.1232059
	(1
	f,p;

	1
	1
	2
	0
	1
	0
	1
	0
	3
	0
	1
	0
	270
	15.1254123
	-
	

	1
	2
	-5
	0
	0
	0
	1
	1
	-4
	0
	0
	0
	0
	15.3847420
	-
	

	1
	2
	-2
	1
	0
	0
	1
	1
	-1
	1
	0
	0
	0
	15.5125897
	(1
	g,p;

	1
	2
	0
	-1
	0
	0
	1
	1
	1
	-1
	0
	0
	270
	15.5854433
	J1
	h,p;

	1
	2
	0
	-1
	1
	0
	1
	1
	1
	-1
	1
	0
	90
	15.5876497
	-
	

	1
	2
	0
	0
	0
	0
	1
	1
	1
	0
	0
	0
	180
	15.5900852
	-
	

	1
	3
	-4
	0
	0
	0
	1
	2
	-3
	0
	0
	0
	270
	15.9748271
	-
	

	1
	3
	-4
	0
	-1
	0
	1
	2
	-3
	0
	-1
	0
	90
	15.9726207
	-
	

	1
	3
	-2
	0
	0
	0
	1
	2
	-1
	0
	0
	0
	90
	16.0569644
	SO1
	p;

	1
	3
	-2
	0
	-1
	0
	1
	2
	-1
	0
	-1
	0
	90
	16.0547580
	-
	

	1
	3
	-1
	0
	0
	0
	1
	2
	0
	0
	0
	0
	270
	16.0980331
	-
	

	1
	3
	0
	0
	0
	0
	1
	2
	1
	0
	0
	0
	90
	16.1391017
	OO1
	p;

	1
	3
	0
	0
	1
	0
	1
	2
	1
	0
	1
	0
	90
	16.1413081
	-
	

	1
	3
	0
	0
	2
	0
	1
	2
	1
	0
	2
	0
	90
	16.1435145
	-
	

	2
	-5
	4
	1
	0
	0
	2
	-7
	6
	1
	0
	0
	0
	26.4079380
	2MN2S2
	

	2
	-4
	2
	0
	0
	0
	2
	-6
	4
	0
	0
	0
	0
	26.8701754
	3M(SK)2
	

	2
	-4
	2
	2
	0
	0
	2
	-6
	4
	2
	0
	0
	0
	26.8794591
	-
	

	2
	-4
	4
	0
	0
	0
	2
	-6
	6
	0
	0
	0
	0
	26.9523127
	3M2S2
	

	2
	-3
	0
	1
	0
	0
	2
	-5
	2
	1
	0
	0
	0
	27.3416965
	OQ2
	i,p;

	2
	-3
	2
	1
	-1
	0
	2
	-5
	4
	1
	-1
	0
	180
	27.4216273
	-
	

	2
	-3
	2
	1
	0
	0
	2
	-5
	4
	1
	0
	0
	0
	27.4238337
	MNS2
	p;

	2
	-3
	4
	-1
	0
	0
	2
	-5
	6
	-1
	0
	0
	0
	27.4966873
	M(S2
	

	2
	-3
	4
	1
	0
	0
	2
	-5
	6
	1
	0
	0
	0
	27.5059710
	MNK2S2
	

	2
	-2
	0
	0
	-1
	0
	2
	-4
	2
	0
	-1
	0
	0
	27.8838647
	-
	

	2
	-2
	0
	0
	0
	0
	2
	-4
	2
	0
	0
	0
	0
	27.8860712
	2MK2
	

	2
	-2
	0
	0
	1
	0
	2
	-4
	2
	0
	1
	0
	0
	27.8882776
	-
	

	2
	-2
	0
	1
	0
	0
	2
	-4
	2
	1
	0
	0
	0
	27.8907130
	-
	

	2
	-2
	0
	2
	-1
	0
	2
	-4
	2
	2
	-1
	0
	180
	27.8931484
	-
	

	2
	-2
	0
	2
	0
	0
	2
	-4
	2
	2
	0
	0
	0
	27.8953548
	2N2
	p;

	2
	-2
	0
	2
	1
	0
	2
	-4
	2
	2
	1
	0
	0
	27.8975612
	-
	

	2
	-2
	0
	2
	2
	0
	2
	-4
	2
	2
	2
	0
	0
	27.8997677
	-
	

	2
	-2
	0
	3
	1
	0
	2
	-4
	2
	3
	1
	0
	0
	27.9022031
	-
	

	2
	-2
	2
	0
	-1
	0
	2
	-4
	4
	0
	1
	0
	180
	27.9660020
	-
	

	2
	-2
	2
	0
	0
	0
	2
	-4
	4
	0
	0
	0
	0
	27.9682084
	(2
	p;

	2
	-1
	-2
	1
	-1
	0
	2
	-3
	0
	1
	-1
	0
	0
	28.3553858
	-
	

	2
	-1
	-2
	1
	0
	0
	2
	-3
	0
	1
	0
	0
	0
	28.3575922
	SNK2
	

	2
	-1
	-1
	1
	0
	0
	2
	-3
	1
	1
	0
	0
	0
	28.3986626
	-
	j;

	2
	-1
	0
	-1
	0
	0
	2
	-3
	2
	-1
	0
	0
	180
	28.4304458
	-
	

	2
	-1
	0
	0
	0
	0
	2
	-3
	2
	0
	0
	0
	90
	28.4350877
	-
	

	2
	-1
	0
	1
	-1
	0
	2
	-3
	2
	1
	-1
	0
	180
	28.4375231
	-
	

	2
	-1
	0
	1
	0
	0
	2
	-3
	2
	1
	0
	0
	0
	28.4397295
	N2
	p;

	2
	-1
	1
	1
	0
	-1
	2
	-3
	3
	1
	0
	-1
	0
	28.4807968
	*
	

	2
	-1
	0
	1
	1
	0
	2
	-3
	2
	1
	1
	0
	0
	28.4419359
	-
	

	2
	-1
	0
	2
	0
	0
	2
	-3
	2
	2
	0
	0
	0
	28.4443714
	-
	

	2
	-1
	2
	-1
	-1
	0
	2
	-3
	4
	-1
	-1
	0
	180
	28.5103767
	-
	

	2
	-1
	2
	-1
	0
	0
	2
	-3
	4
	-1
	0
	0
	0
	28.5125831
	(2
	p;

	2
	-1
	2
	-1
	1
	0
	2
	-3
	4
	-1
	1
	0
	0
	28.5147895
	-
	

	2
	-1
	2
	0
	0
	0
	2
	-3
	4
	0
	0
	0
	0
	28.5172250
	-
	

	2
	-1
	2
	0
	1
	0
	2
	-3
	4
	0
	1
	0
	0
	28.5194314
	-
	

	2
	-1
	2
	5
	0
	0
	2
	-3
	4
	5
	0
	0
	0
	28.5404342
	-
	

	2
	0
	-4
	0
	0
	0
	2
	-2
	-2
	0
	0
	0
	0
	28.8198297
	-
	

	2
	0
	-6
	3
	0
	0
	2
	-2
	-4
	3
	0
	0
	0
	28.7516179
	-
	

	2
	0
	-4
	2
	0
	0
	2
	-2
	-2
	2
	0
	0
	0
	28.8291133
	-
	

	2
	0
	-2
	0
	-1
	0
	2
	-2
	0
	0
	-1
	0
	0
	29.8997605
	-
	

	2
	0
	-2
	0
	0
	0
	2
	-2
	0
	0
	0
	0
	0
	28.9019669
	OP2
	p;

	2
	0
	-2
	2
	0
	0
	2
	-2
	0
	2
	0
	0
	180
	28.9112506
	-
	

	2
	0
	-1
	0
	-1
	0
	2
	-2
	1
	0
	-1
	0
	0
	28.9408292
	-
	

	2
	0
	-1
	0
	0
	0
	2
	-2
	1
	0
	0
	0
	0
	28.9430356
	MA2
	

	2
	0
	-1
	0
	1
	0
	2
	-2
	1
	0
	1
	0
	0
	28.9452420
	-
	

	2
	0
	0
	0
	-1
	0
	2
	-2
	2
	0
	-1
	0
	180
	28.9818978
	-
	

	2
	0
	0
	0
	0
	0
	2
	-2
	2
	0
	0
	0
	0
	28.9841042
	M2
	p;

	2
	0
	0
	0
	1
	0
	2
	-2
	2
	0
	1
	0
	0
	28.9863106
	-
	

	2
	0
	1
	0
	-1
	0
	2
	-2
	3
	0
	-1
	0
	0
	29.0229664
	-
	

	2
	0
	1
	0
	0
	0
	2
	-2
	3
	0
	0
	0
	0
	29.0251729
	Ma2
	

	2
	0
	1
	0
	1
	0
	2
	-2
	3
	0
	1
	0
	0
	29.0273793
	-
	

	2
	0
	2
	0
	0
	0
	2
	-2
	4
	0
	0
	0
	0
	29.0662415
	MKS2
	p;

	2
	0
	2
	0
	1
	0
	2
	-2
	4
	0
	1
	0
	0
	28.0684479
	-
	

	2
	1
	-4
	1
	0
	0
	2
	-1
	-2
	1
	0
	0
	0
	29.3734880
	-
	

	2
	1
	-2
	1
	0
	0
	2
	-1
	0
	1
	0
	0
	180
	29.4556253
	(2
	p;

	2
	1
	-2
	1
	1
	0
	2
	-1
	0
	1
	1
	0
	180
	29.4578317
	-
	

	2
	1
	0
	-1
	-1
	0
	2
	-1
	2
	-1
	-1
	0
	180
	29.5262725
	-
	

	2
	1
	0
	-1
	0
	0
	2
	-1
	2
	-1
	0
	0
	180
	29.5284789
	L2
	p;

	2
	1
	0
	-1
	1
	0
	2
	-1
	2
	-1
	1
	0
	180
	29.5306853
	-
	

	2
	1
	0
	0
	0
	0
	2
	-1
	2
	0
	0
	0
	270
	29.5331207
	-
	

	2
	1
	0
	0
	1
	0
	2
	-1
	2
	0
	1
	0
	270
	29.5353272
	-
	

	2
	1
	0
	1
	0
	0
	2
	-1
	2
	1
	0
	0
	0
	29.5377626
	-
	

	2
	1
	0
	1
	1
	0
	2
	-1
	2
	1
	1
	0
	0
	29.5399690
	-
	

	2
	1
	0
	1
	2
	0
	2
	-1
	2
	1
	2
	0
	0
	29.5421754
	-
	

	2
	2
	-7
	-1
	0
	0
	2
	0
	-5
	-1
	0
	0
	0
	29.7900150
	-
	

	2
	2
	-4
	0
	0
	0
	2
	0
	-2
	0
	0
	0
	0
	29.9178627
	2SK2
	

	2
	2
	-3
	0
	0
	1
	2
	0
	-1
	0
	0
	1
	0
	29.9589333
	T2
	p;

	2
	2
	-2
	0
	-1
	0
	2
	0
	0
	0
	-1
	0
	180
	29.9977936
	-
	

	2
	2
	-2
	0
	0
	0
	2
	0
	0
	0
	0
	0
	0
	30.0
	S2
	p;

	2
	2
	-2
	0
	0
	0
	2
	0
	0
	0
	1
	0
	0
	30.0022064
	
	

	2
	2
	-1
	0
	0
	-1
	2
	0
	1
	0
	0
	-1
	180
	30.0410667
	R2
	p;

	2
	2
	0
	0
	0
	0
	2
	0
	2
	0
	0
	0
	0
	30.0821373
	K2
	p;

	2
	2
	0
	0
	1
	0
	2
	0
	2
	0
	1
	0
	0
	30.0843437
	-
	

	2
	2
	0
	0
	2
	0
	2
	0
	2
	0
	2
	0
	0
	30.0865501
	-
	

	2
	3
	-4
	1
	0
	0
	2
	1
	-2
	1
	0
	0
	0
	30.4715211
	-
	

	2
	3
	-2
	-1
	-1
	0
	2
	1
	0
	-1
	-1
	0
	0
	30.5421683
	-
	

	2
	3
	-2
	-1
	0
	0
	2
	1
	0
	-1
	0
	0
	0
	30.5443747
	MSN2
	p;

	2
	3
	-2
	1
	0
	0
	2
	1
	0
	1
	0
	0
	180
	30.5536584
	-
	

	2
	3
	0
	-1
	0
	0
	2
	1
	2
	-1
	0
	0
	0
	30.6265120
	KJ2
	k,p;

	2
	4
	-4
	0
	0
	0
	2
	2
	-2
	0
	0
	0
	0
	31.0158958
	2SM2
	p;

	2
	4
	-3
	-3
	0
	0
	2
	2
	-1
	-3
	0
	0
	0
	31.0430389
	-
	

	2
	4
	-2
	-2
	0
	0
	2
	2
	0
	-2
	0
	0
	0
	31.0887494
	2MS2N2
	

	2
	4
	-2
	0
	0
	0
	2
	2
	0
	0
	0
	0
	0
	31.0980331
	SKM2
	

	2
	4
	-2
	0
	1
	0
	2
	2
	0
	0
	1
	0
	0
	31.1002395
	-
	

	2
	5
	-6
	1
	0
	0
	2
	3
	-4
	1
	0
	0
	0
	31.4874169
	-
	

	2
	6
	-6
	0
	0
	0
	2
	4
	-4
	0
	0
	0
	0
	32.0317916
	-
	

	2
	6
	-4
	0
	0
	0
	2
	4
	-2
	0
	0
	0
	0
	32.1139288
	-
	

	3
	-4
	0
	0
	0
	0
	3
	-7
	3
	0
	0
	0
	0
	41.2800902
	-
	

	3
	-4
	0
	1
	-1
	0
	3
	-7
	3
	1
	-1
	0
	0
	41.2825256
	-
	

	3
	-4
	0
	1
	0
	0
	3
	-7
	3
	1
	0
	0
	0
	41.2847320
	-
	

	3
	-4
	0
	1
	1
	0
	3
	-7
	3
	1
	1
	0
	0
	41.2869385
	-
	

	3
	-4
	0
	2
	0
	0
	3
	-7
	3
	2
	0
	0
	0
	41.2893739
	-
	

	3
	-2
	0
	1
	-1
	0
	3
	-5
	3
	1
	-1
	0
	270
	42.3805587
	-
	

	3
	-2
	0
	1
	0
	0
	3
	-5
	3
	1
	0
	0
	270
	42.3827651
	N03
	

	3
	-2
	0
	1
	1
	0
	3
	-5
	3
	1
	1
	0
	0
	42.3849715
	-
	

	3
	-1
	0
	-1
	-2
	0
	3
	-4
	3
	-1
	-2
	0
	0
	42.9180851
	-
	

	3
	-1
	0
	-1
	-1
	0
	3
	-4
	3
	-1
	-1
	0
	0
	42.9202915
	-
	

	3
	-1
	0
	-1
	0
	0
	3
	-4
	3
	-1
	0
	0
	0
	42.9224980
	-
	

	3
	-1
	0
	1
	0
	0
	3
	-4
	3
	1
	0
	0
	0
	42.9317816
	-
	

	3
	-1
	0
	1
	1
	0
	3
	-4
	3
	1
	1
	0
	0
	42.9339880
	-
	

	3
	-1
	0
	0
	-1
	0
	3
	-4
	3
	0
	-1
	0
	0
	42.9249334
	-
	

	3
	-1
	0
	0
	0
	0
	3
	-4
	3
	0
	0
	0
	270
	42.9271398
	M03
	p;

	3
	-1
	0
	0
	1
	0
	3
	-4
	3
	0
	1
	0
	180
	42.9293462
	-
	

	3
	-1
	1
	0
	0
	0
	3
	-4
	4
	0
	0
	0
	0
	42.9682084
	-
	

	3
	-1
	2
	0
	0
	0
	3
	-4
	5
	0
	0
	0
	0
	43.0092771
	2MP3
	l;

	3
	-1
	2
	1
	0
	0
	3
	-4
	5
	1
	0
	0
	0
	43.0139189
	-
	

	3
	0
	0
	-1
	0
	0
	3
	-3
	3
	-1
	0
	0
	90
	43.4715145
	-
	

	3
	0
	0
	0
	0
	0
	3
	-3
	3
	0
	0
	0
	180
	43.4761563
	M3
	p;

	3
	0
	0
	1
	0
	0
	3
	-3
	3
	1
	0
	0
	90
	43.4807982
	-
	

	3
	0
	0
	1
	1
	0
	3
	-3
	3
	1
	1
	0
	0
	43.4830046
	-
	

	3
	0
	2
	-1
	0
	0
	3
	-3
	5
	-1
	0
	0
	90
	43.5536518
	-
	

	3
	1
	-2
	0
	0
	0
	3
	-2
	1
	0
	0
	0
	270
	43.9430356
	S03
	p;

	3
	1
	-2
	1
	0
	0
	3
	-2
	1
	1
	0
	0
	0
	43.9476774
	-
	

	3
	1
	0
	-1
	-1
	0
	3
	-2
	3
	-1
	-1
	0
	0
	44.0183246
	-
	

	3
	1
	0
	-1
	0
	0
	3
	-2
	3
	-1
	0
	0
	0
	44.0205310
	-
	

	3
	1
	0
	0
	0
	0
	3
	-2
	3
	0
	0
	0
	90
	44.0251729
	MK3
	p;

	3
	1
	0
	1
	0
	0
	3
	-2
	3
	1
	0
	0
	0
	44.0298147
	-
	

	3
	1
	0
	1
	1
	0
	3
	-2
	3
	1
	1
	0
	0
	44.0320211
	-
	

	3
	2
	0
	-1
	0
	0
	3
	-1
	3
	-1
	0
	0
	90
	44.5695475
	-
	

	3
	2
	0
	0
	0
	0
	3
	-1
	3
	0
	0
	0
	0
	44.5741894
	-
	

	3
	3
	-4
	0
	0
	0
	3
	0
	-1
	0
	0
	0
	270
	44.9589314
	-
	

	3
	3
	-3
	0
	0
	0
	3
	0
	0
	0
	0
	0
	0
	45.0
	S3
	m;

	3
	3
	-2
	0
	0
	0
	3
	0
	1
	0
	0
	0
	90
	45.0410686
	SK3
	p;

	3
	3
	-1
	0
	0
	0
	3
	0
	2
	0
	0
	0
	0
	45.0821373
	-
	

	3
	6
	-3
	-1
	0
	0
	3
	3
	0
	-1
	0
	0
	270
	46.6424077
	-
	

	3
	-1
	0
	-1
	0
	0
	3
	-4
	3
	-1
	0
	0
	0
	42.9224980
	-
	

	3
	-1
	0
	1
	0
	0
	3
	-4
	3
	1
	0
	0
	0
	42.9317816
	-
	

	3
	-1
	0
	1
	1
	0
	3
	-4
	3
	1
	1
	0
	0
	42.9339880
	-
	

	3
	1
	0
	0
	-1
	0
	3
	-2
	3
	0
	-1
	0
	0
	44.0229664
	-
	

	3
	1
	0
	0
	1
	0
	3
	-2
	3
	0
	1
	0
	0
	44.0273793
	-
	

	3
	7
	-8
	0
	0
	0
	3
	4
	-5
	0
	0
	0
	270
	46.9907229
	-
	

	3
	7
	-6
	0
	0
	0
	3
	4
	-3
	0
	0
	0
	0
	47.0728602
	-
	

	4
	-4
	4
	0
	0
	0
	4
	-8
	8
	0
	0
	0
	0
	55.9364169
	-
	

	4
	-3
	-2
	2
	0
	0
	4
	-7
	2
	2
	0
	0
	0
	56.2483052
	-
	

	4
	-3
	0
	1
	0
	0
	4
	-7
	4
	1
	0
	0
	0
	56.3258007
	-
	

	4
	-3
	2
	1
	0
	0
	4
	-7
	6
	1
	0
	0
	0
	56.4079380
	2MNS4
	

	4
	-3
	3
	3
	0
	0
	4
	-7
	7
	3
	0
	0
	0
	56.4582903
	-
	

	4
	-2
	-5
	1
	0
	0
	4
	-6
	-1
	1
	0
	0
	0
	56.6694740
	-
	

	4
	-2
	-2
	2
	0
	0
	4
	-6
	2
	2
	0
	0
	0
	56.7973218
	-
	

	4
	-2
	0
	0
	0
	0
	4
	-6
	4
	0
	0
	0
	0
	56.8701754
	3MK4
	

	4
	-2
	0
	1
	0
	0
	4
	-6
	4
	1
	0
	0
	0
	56.8748172
	-
	

	4
	-2
	0
	2
	0
	0
	4
	-6
	4
	2
	0
	0
	0
	56.8794591
	-
	

	4
	-2
	2
	0
	0
	0
	4
	-6
	6
	0
	0
	0
	0
	56.9523127
	3MS4
	

	4
	-2
	5
	2
	0
	0
	4
	-6
	9
	2
	0
	0
	0
	57.0848023
	-
	

	4
	-1
	-2
	1
	0
	0
	4
	-5
	2
	1
	0
	0
	0
	57.3416965
	-
	

	4
	-1
	0
	1
	-2
	0
	4
	-5
	4
	1
	-2
	0
	0
	57.4194209
	-
	

	4
	-1
	0
	1
	-1
	0
	4
	-5
	4
	1
	-1
	0
	180
	57.4216273
	-
	

	4
	-1
	0
	1
	0
	0
	4
	-5
	4
	1
	0
	0
	0
	57.4238337
	MN4
	p;

	4
	-1
	0
	1
	1
	0
	4
	-5
	4
	1
	1
	0
	0
	57.4260402
	-
	

	4
	-1
	2
	-1
	0
	0
	4
	-5
	6
	-1
	0
	0
	0
	57.4966873
	M(4
	

	4
	-1
	2
	1
	0
	0
	4
	-5
	6
	1
	0
	0
	0
	57.505971
	-
	

	4
	-1
	7
	0
	0
	0
	4
	-5
	11
	0
	0
	0
	0
	57.7066724
	-
	

	4
	0
	-2
	0
	0
	0
	4
	-4
	2
	0
	0
	0
	0
	57.8860712
	-
	

	4
	0
	-2
	2
	0
	0
	4
	-4
	2
	2
	0
	0
	180
	57.8953548
	-
	

	4
	0
	-2
	6
	0
	0
	4
	-4
	2
	6
	0
	0
	0
	57.9139222
	-
	

	4
	0
	0
	0
	-1
	0
	4
	-4
	4
	0
	-1
	0
	180
	57.9660020
	-
	

	4
	0
	0
	0
	0
	0
	4
	-4
	4
	0
	0
	0
	0
	57.9682084
	M4
	p;

	4
	0
	2
	0
	0
	0
	4
	-4
	6
	0
	0
	0
	0
	58.0503457
	-
	

	4
	0
	4
	-1
	0
	0
	4
	-4
	8
	-1
	0
	0
	0
	58.1278412
	-
	

	4
	1
	-5
	5
	0
	0
	4
	-3
	-1
	5
	0
	0
	0
	58.3350910
	-
	

	4
	1
	-2
	1
	-1
	0
	4
	-3
	2
	1
	-1
	0
	180
	58.4375231
	-
	

	4
	1
	-2
	1
	0
	0
	4
	-3
	2
	1
	0
	0
	0
	58.4397295
	SN4
	p;

	4
	1
	0
	-1
	0
	0
	4
	-3
	4
	-1
	0
	0
	0
	58.5125831
	ML4
	

	4
	1
	0
	1
	0
	0
	4
	-3
	4
	1
	0
	0
	0
	58.5218668
	-
	

	4
	1
	0
	5
	0
	0
	4
	-3
	4
	5
	0
	0
	0
	58.5404342
	-
	

	4
	2
	-4
	0
	0
	0
	4
	-2
	0
	0
	0
	0
	0
	58.9019669
	-
	

	4
	2
	-2
	-5
	0
	0
	4
	-2
	2
	-5
	0
	0
	0
	58.9608950
	-
	

	4
	2
	-2
	0
	-1
	0
	4
	-2
	2
	0
	-1
	0
	180
	58.9818978
	-
	

	4
	2
	-2
	0
	0
	0
	4
	-2
	2
	0
	0
	0
	0
	58.9841042
	MS4
	p;

	4
	2
	-2
	0
	1
	0
	4
	-2
	2
	0
	1
	0
	0
	58.9863106
	-
	

	4
	2
	0
	0
	-1
	0
	4
	-2
	4
	0
	-1
	0
	180
	59.0640352
	-
	

	4
	2
	0
	0
	0
	0
	4
	-2
	4
	0
	0
	0
	0
	59.0662415
	MK4
	p;

	4
	2
	0
	0
	1
	0
	4
	-2
	4
	0
	1
	0
	0
	59.0684479
	-
	

	4
	2
	2
	0
	0
	0
	4
	-2
	6
	0
	0
	0
	0
	59.1483788
	-
	

	4
	2
	2
	4
	0
	0
	4
	-2
	6
	4
	0
	0
	0
	59.1669461
	-
	

	4
	3
	-4
	1
	0
	0
	4
	-1
	0
	1
	0
	0
	180
	59.4556253
	-
	

	4
	3
	-2
	-1
	0
	0
	4
	-1
	2
	-1
	0
	0
	0
	59.5284789
	-
	

	4
	3
	-2
	1
	0
	0
	4
	-1
	2
	1
	0
	0
	180
	59.5377626
	-
	

	4
	3
	-1
	2
	0
	0
	4
	-1
	3
	2
	0
	0
	0
	59.5834731
	-
	

	4
	3
	0
	-1
	0
	0
	4
	-1
	4
	-1
	0
	0
	0
	59.6106162
	-
	

	4
	3
	5
	-6
	0
	0
	4
	-1
	9
	-6
	0
	0
	0
	59.7927562
	-
	

	4
	4
	-4
	0
	0
	0
	4
	0
	0
	0
	0
	0
	0
	60.0
	S4
	p;

	4
	4
	-2
	0
	0
	0
	4
	0
	2
	0
	0
	0
	0
	60.0821373
	SK4
	p;

	4
	4
	0
	0
	0
	0
	4
	0
	4
	0
	0
	0
	0
	60.1642746
	-
	

	4
	5
	-2
	-1
	0
	0
	4
	1
	2
	-1
	0
	0
	0
	60.6265120
	-
	

	5
	-1
	0
	0
	0
	0
	5
	-6
	5
	0
	0
	0
	270
	71.9112473
	3MK5
	n;

	5
	0
	0
	0
	0
	0
	5
	-5
	5
	0
	0
	0
	180
	72.4602585
	M5
	n;

	5
	1
	-2
	0
	0
	0
	5
	-4
	3
	0
	0
	0
	0
	72.9271393
	-
	n;

	5
	1
	0
	0
	0
	0
	5
	-4
	5
	0
	0
	0
	90
	73.0092773
	3MO5
	n;

	5
	3
	-2
	0
	0
	0
	5
	-2
	3
	0
	0
	0
	0
	74.0251694
	-
	n;

	6
	-4
	0
	0
	0
	0
	6
	-10
	6
	0
	0
	0
	0
	84.7562465
	-
	

	6
	-4
	2
	2
	0
	0
	6
	-10
	8
	2
	0
	0
	0
	84.8476675
	-
	

	6
	-4
	4
	0
	0
	0
	6
	-10
	10
	0
	0
	0
	0
	84.9205211
	-
	

	6
	-3
	-3
	0
	0
	0
	6
	-9
	3
	0
	0
	0
	0
	85.1820571
	-
	

	6
	-3
	0
	1
	0
	0
	6
	-9
	6
	1
	0
	0
	0
	85.3099049
	-
	

	6
	-3
	0
	3
	0
	0
	6
	-9
	6
	3
	0
	0
	0
	85.3191886
	-
	

	6
	-3
	1
	0
	0
	0
	6
	-9
	7
	0
	0
	0
	0
	85.3463317
	-
	

	6
	-3
	2
	1
	0
	0
	6
	-9
	8
	1
	0
	0
	0
	85.3920422
	3MNS6
	

	6
	-2
	-4
	0
	0
	0
	6
	-8
	2
	0
	0
	0
	0
	85.6900050
	-
	

	6
	-2
	0
	0
	0
	0
	6
	-8
	6
	0
	0
	0
	0
	85.8542796
	-
	

	6
	-2
	0
	2
	0
	0
	6
	-8
	6
	2
	0
	0
	0
	85.8635633
	-
	

	6
	-2
	1
	0
	0
	0
	6
	-8
	7
	0
	0
	0
	0
	85.8953482
	-
	

	6
	-2
	2
	0
	-1
	0
	6
	-8
	8
	0
	-1
	0
	180
	85.9342105
	-
	

	6
	-2
	2
	0
	0
	0
	6
	-8
	8
	0
	0
	0
	0
	85.9364169
	4MS6
	

	6
	-1
	-2
	1
	0
	0
	6
	-7
	4
	1
	0
	0
	0
	86.3258007
	-
	

	6
	-1
	-1
	0
	0
	0
	6
	-7
	5
	0
	0
	0
	0
	86.3622275
	-
	

	6
	-1
	0
	1
	-1
	0
	6
	-7
	6
	1
	-1
	0
	180
	86.4057316
	-
	

	6
	-1
	0
	1
	0
	0
	6
	-7
	6
	1
	0
	0
	0
	86.4079380
	2MN6
	p;

	6
	-1
	1
	0
	0
	0
	6
	-7
	7
	0
	0
	0
	0
	86.4443648
	-
	

	6
	-1
	2
	-1
	0
	0
	6
	-7
	8
	-1
	0
	0
	0
	86.4807916
	2M(6
	

	6
	0
	-2
	0
	0
	0
	6
	-6
	4
	0
	0
	0
	0
	86.8701754
	3MSK6
	

	6
	0
	-2
	2
	0
	0
	6
	-6
	4
	2
	0
	0
	0
	86.8794591
	-
	

	6
	0
	-1
	0
	0
	0
	6
	-6
	5
	0
	0
	0
	0
	86.9112440
	-
	

	6
	0
	0
	0
	-1
	0
	6
	-6
	6
	0
	-1
	0
	180
	86.9501062
	-
	

	6
	0
	0
	0
	0
	0
	6
	-6
	6
	0
	0
	0
	0
	86.9523127
	M6
	p;

	6
	0
	0
	2
	0
	0
	6
	-6
	6
	2
	0
	0
	0
	86.9615963
	-
	

	6
	0
	1
	0
	0
	0
	6
	-6
	7
	0
	0
	0
	0
	86.9933813
	-
	

	6
	0
	2
	0
	0
	0
	6
	-6
	8
	0
	0
	0
	0
	87.0344499
	-
	

	6
	1
	-2
	-1
	0
	0
	6
	-5
	4
	-1
	0
	0
	180
	87.4145501
	-
	

	6
	1
	-2
	1
	-1
	0
	6
	-5
	4
	1
	-1
	0
	180
	87.4216273
	-
	

	6
	1
	-2
	1
	0
	0
	6
	-5
	4
	1
	0
	0
	0
	87.4238337
	MSN6
	p;

	6
	1
	-1
	0
	0
	0
	6
	-5
	5
	0
	0
	0
	0
	87.4602605
	-
	

	6
	1
	0
	-1
	0
	0
	6
	-5
	6
	-1
	0
	0
	0
	87.4966873
	-
	

	6
	1
	0
	1
	-1
	0
	6
	-5
	6
	1
	-1
	0
	180
	87.5037646
	-
	

	6
	1
	0
	1
	0
	0
	6
	-5
	6
	1
	0
	0
	0
	87.5059710
	-
	

	6
	1
	0
	1
	1
	0
	6
	-5
	6
	1
	1
	0
	0
	87.5081774
	-
	

	6
	1
	1
	0
	0
	0
	6
	-5
	7
	0
	0
	0
	0
	87.5423978
	-
	

	6
	1
	2
	-1
	0
	0
	6
	-5
	8
	-1
	0
	0
	0
	87.5788246
	-
	

	6
	2
	-4
	0
	0
	0
	6
	-4
	2
	0
	0
	0
	0
	87.8860712
	-
	

	6
	2
	-4
	2
	0
	0
	6
	-4
	2
	2
	0
	0
	0
	87.8953548
	-
	

	6
	2
	2
	0
	-1
	0
	6
	-4
	8
	0
	-1
	0
	180
	87.9660020
	-
	

	6
	2
	-2
	0
	0
	0
	6
	-4
	4
	0
	0
	0
	0
	87.9682084
	2MS6
	p;

	6
	2
	-1
	0
	0
	0
	6
	-4
	5
	0
	0
	0
	0
	88.0092771
	-
	

	6
	2
	0
	0
	1
	0
	6
	-4
	6
	0
	1
	0
	180
	88.0481393
	-
	

	6
	2
	0
	0
	0
	0
	6
	-4
	6
	0
	0
	0
	0
	88.0503457
	2MK6
	p;

	6
	2
	0
	0
	1
	0
	6
	-4
	6
	0
	1
	0
	0
	88.0525521
	-
	

	6
	2
	1
	0
	0
	0
	6
	-4
	7
	0
	0
	0
	0
	88.0914144
	-
	

	6
	2
	2
	0
	0
	0
	6
	-4
	8
	0
	0
	0
	0
	88.1324830
	-
	

	6
	3
	-4
	1
	0
	0
	6
	-3
	2
	1
	0
	0
	0
	88.4397295
	-
	

	6
	3
	-3
	0
	0
	0
	6
	-3
	3
	0
	0
	0
	0
	89.4761563
	-
	

	6
	3
	-2
	-1
	0
	0
	6
	-3
	4
	-1
	0
	0
	0
	88.5125831
	3MSN6
	

	6
	3
	-2
	1
	0
	0
	6
	-3
	4
	1
	0
	0
	0
	88.5218668
	-
	

	6
	3
	-1
	0
	0
	0
	6
	-3
	5
	0
	0
	0
	0
	88.5582936
	-
	

	6
	3
	0
	-1
	0
	0
	6
	-3
	6
	-1
	0
	0
	180
	88.5947204
	-
	

	6
	4
	-4
	0
	-1
	0
	6
	-2
	2
	0
	-1
	0
	180
	88.9818978
	-
	

	6
	4
	-4
	0
	0
	0
	6
	-2
	2
	0
	0
	0
	0
	88.9841042
	2SM6
	p;

	6
	4
	-2
	0
	-1
	0
	6
	-2
	4
	0
	-1
	0
	180
	89.0640351
	-
	

	6
	4
	-2
	0
	0
	0
	6
	-2
	4
	0
	0
	0
	0
	89.0662415
	MSK6
	p;

	6
	4
	-2
	0
	1
	0
	6
	-2
	4
	0
	1
	0
	0
	89.0684479
	-
	

	6
	4
	-1
	0
	0
	0
	6
	-2
	5
	0
	0
	0
	0
	89.1073101
	-
	

	6
	4
	0
	0
	0
	0
	6
	-2
	6
	0
	0
	0
	0
	89.1483788
	-
	

	6
	5
	-4
	-1
	0
	0
	6
	-1
	2
	-1
	0
	0
	180
	89.5284789
	-
	

	6
	5
	-3
	0
	0
	0
	6
	-1
	3
	0
	0
	0
	0
	89.5741894
	-
	

	6
	5
	-2
	-1
	0
	0
	6
	-1
	4
	-1
	0
	0
	180
	89.6106162
	-
	

	6
	6
	-6
	0
	0
	0
	6
	0
	0
	0
	0
	0
	0
	90.0
	S6
	

	8
	-2
	0
	2
	0
	0
	8
	-10
	8
	2
	0
	0
	0
	114.8476639
	2(MN)8
	n;

	8
	-1
	0
	1
	0
	0
	8
	-9
	8
	1
	0
	0
	0
	115.3920441
	3MN8
	n;

	8
	0
	0
	0
	0
	0
	8
	-8
	8
	0
	0
	0
	0
	115.9364166
	2M4
	n;

	8
	1
	-2
	1
	0
	0
	8
	-7
	6
	1
	0
	0
	0
	116.4079361
	2MSN8
	n;

	8
	2
	-2
	0
	0
	0
	8
	-6
	6
	0
	0
	0
	0
	116.9523163
	3MS8
	n;

	8
	2
	0
	0
	0
	0
	8
	-6
	8
	0
	0
	0
	0
	117.0344467
	3MK8
	n;

	8
	3
	-2
	1
	0
	0
	8
	-5
	6
	1
	0
	0
	0
	117.5059738
	MSNK8
	n;

	8
	4
	-4
	0
	0
	0
	8
	-4
	4
	0
	0
	0
	0
	117.9682083
	2(MS)8
	n;

	8
	4
	-2
	0
	0
	0
	8
	-4
	6
	0
	0
	0
	0
	118.0503464
	2MSK8
	n;

	8
	8
	-8
	0
	0
	0
	8
	0
	0
	0
	0
	0
	0
	120.0
	S8
	o;

	10
	2
	-2
	0
	0
	0
	10
	-8
	8
	0
	0
	0
	0
	145.9364166
	4MS10
	n;

	10
	4
	-4
	0
	0
	0
	10
	-6
	6
	0
	0
	0
	0
	146.9523163
	3M2S10
	n;

	12
	1
	-2
	1
	0
	0
	12
	-11
	10
	1
	0
	0
	0
	174.3761444
	4MSN12
	n;

	12
	2
	-2
	0
	0
	0
	12
	-10
	10
	0
	0
	0
	0
	174.9205170
	5MS12
	n;

	12
	4
	-4
	0
	0
	0
	12
	-8
	8
	0
	0
	0
	0
	175.9364166
	4M2S12
	n;


Notes

The phase constants () arise from a simplification of Doodson's "geodetic coefficients" which converts the sines into cosines, and negative into positive values. The conversion is based on the two trigonometric identities 

sin  = cos ( - 90)  (to change a sine to a cosine) and  

–  cos  = cos ( + 180) (to change a negative coefficient to a positive one). 

The angles are necessary inasmuch as the harmonic method of tidal analysis and prediction is based on the use of cosine terms with positive arguments. Additional details may be found in Amin (1976). Those above are based on: 

• Amin (1976), Table 4,

• Doodson (1921) Schedules 0, 1, 2, 3, (using Table 3 in  Amin (1976) to deduce 
• Godin (1972) Table 2.14 (+1 added to negative fractions, and converted to degrees),

•  Schureman (1941),  and 

• standard NTFA practice. The listing in Foreman (1977) is the same as Godin (1972), where the same constituent is listed in both. 

Of the nearly 350 constituents listed, NTFA uses about 113 in a normal analysis. The differences listed in a – m are not a concern in standard tidal analysis as long as the same set is used in prediction and analysis (the discrepancy will be reflected in a different phase lag (“g”) resulting from the different analyses). Many constituents listed above were unknown at the time of Schureman (1941), while he lists some (mostly long-period) constituents that are not in the list above.  Where Schureman writes “-90”, it has been written “270” here.

a. Values given are for a radiational Sa; Foreman uses if = -1, suitable for a gravitational Sa. 

b.  M1:  = 90( in NTFA and Godin;  = 180( in Amin, Doodson, and Schureman.

c.  (1:  = 90( in NTFA, Doodson, and Godin;  = 0( in Amin; 270( in Schureman.

d.  Values given are for a radiational S1; Foreman uses if = 1 and  = 90(.

e. (1:  = 90( in NTFA, Doodson, and Godin;  = 270( in Amin and Schureman.

f.  1:  = 90( in NTFA, Doodson, and Godin;  = 270( in Amin and Schureman.

g.  (1:  = 90( in NTFA, Doodson, and Godin;  = 0( in Amin and Schureman.

h.  J1: = 90( in NTFA, Doodson, and Godin;  = 270( in Amin and Schureman.

i.  OQ2:  = 180( in NTFA;  = 0( in Amin. Not listed in the others.

j.  (unnamed):  = 0( in NTFA;   = 180( in Doodson. Not listed in the others.

k. KJ2:  = 180( in NTFA;  = 0( in Amin, Doodson, and Schureman.

l.  2MP3:  = 90( in NTFA;  = 0( in Amin;  = 180( in Doodson; unlisted in Schureman.

m.  S3:  = 180( in NTFA; = 0( in Amin and Schureman.

n.  From NTFA listing only.

o.  From Schureman only.

p. See inference regarding analyses of less than one year of data.

Table 7.2   Nodal corrections used by the Australian National Tidal Centre

	Solar time
	
	
	
	

	ia
	ib
	ic
	id
	ie
	if
	 (/hour
	Name
	f (no units)
	u (radians)

	0
	0
	1
	0
	0
	0
	0.0410686
	Sa
	1
	0

	0
	0
	2
	0
	0
	0
	0.0821373
	Ssa
	1
	0

	0
	1
	0
	-1
	0
	0
	0.5443747
	Mm
	1-0.1300*cos N +.0013*cos 2N 
	0

	0
	2
	-2
	0
	0
	0
	1.0158958
	Msf
	f(M2)
	-u(M2)

	0
	2
	0
	0
	0
	0
	1.0980331
	Mf
	1.0429+0.4135* cos N -0.004*cos 2N 
	-0.4143*sin N + 0.0468* sin 2N –0.0066*sin 3N

	1
	-4
	1
	2
	0
	0
	12.8542862
	2Q1
	f(O1)
	u(O1)

	1
	-4
	3
	0
	0
	0
	12.9271398
	1
	f(O1)
	u(O1)

	1
	-3
	1
	1
	0
	0
	13.3986609
	Q1
	f(O1)
	u(O1)

	1
	-3
	3
	-1
	0
	0
	13.4715145
	1
	f(O1)
	u(O1)

	1
	-2
	1
	0
	0
	0
	13.9430356
	O1
	1.0089+0.1871*cos N - 0.0147*cos 2N +0.0014*cos 3N 
	0.1885*sin N -0.0234*sin 2N +.0033*sin 3N 

	1
	-2
	3
	0
	0
	0
	14.0251729
	MP1
	f(M2)*f(P1)
	u(M2)-u(P1)

	1
	-1
	1
	0
	0
	0
	14.4920521
	M1
	See A.
	See A.

	1
	-1
	3
	-1
	0
	0
	14.5695475
	(1
	f(J1)
	u(J1)

	1
	0
	-2
	0
	0
	1
	14.9178647
	(1
	1
	0

	1
	0
	-1
	0
	0
	0
	14.9589314
	P1
	1
	0

	1
	0
	0
	0
	0
	0
	15.0
	S1
	1
	0

	1
	0
	1
	0
	0
	0
	15.0410686
	K1
	1.0060+0.1150*cos N -0.0088*cos 2N +0.0006*cos 3N 
	-0.1546*sin N +0.0119 * sin 2N – 0.0012*sin 3N 

	1
	0
	2
	0
	0
	-1
	15.0821353
	(1
	1
	0

	1
	0
	3
	0
	0
	0
	15.1232059
	(1
	1
	0

	1
	1
	-1
	1
	0
	0
	15.5125897
	(1
	f(J1)
	u(J1)

	1
	1
	1
	-1
	0
	0
	15.5854433
	J1
	1.0129+.1676*cos N -0.0170*cos 2N +0.0016*cos 3N 
	-0.2258*sin N +0.0234 * sin 2N – 0.0033*sin 3N 

	1
	2
	-1
	0
	0
	0
	16.0569644
	SO1
	f(O1)
	u(O1)

	1
	2
	1
	0
	0
	0
	16.1391017
	OO1
	1.1027+0.6504*cos N + 0.0317*cos 2N -0.0014*cos 3N 
	-0.6402*sin N +0.0702 * sin 2N - 0.0099*sin 3N 

	2
	-7
	6
	1
	0
	0
	26.4079380
	2MN2S2
	1
	0

	2
	-6
	4
	0
	0
	0
	26.8701754
	3M(SK)2
	f(M2) * f(M4)*f(K2)
	3*u(M2)-u(K2)

	2
	-6
	6
	0
	0
	0
	26.9523127
	3M2S2
	f(M6)
	u(M6)

	2
	-5
	2
	1
	0
	0
	27.3416965
	OQ2
	f(O1)2
	2*u(O1)

	2
	-5
	4
	1
	0
	0
	27.4238337
	MNS2
	f(M2)2
	2*u(M2)

	2
	-5
	6
	1
	0
	0
	27.5059710
	MNK2S2
	f(M4)*f(K2)
	u(M4)+u(K2)

	2
	-4
	2
	2
	0
	0
	27.8953548
	2N2
	f(M2)
	u(M2)

	2
	-4
	4
	0
	0
	0
	27.9682084
	(2
	f(M2)
	u(M2)

	2
	-3
	0
	1
	0
	0
	28.3575922
	SNK2
	f(M2)*f(K2)
	u(M2)+u(K2)

	2
	-3
	1
	1
	0
	0
	28.3986626
	NA2
	1
	0

	2
	-3
	2
	1
	0
	0
	28.4397295
	N2
	f(M2)
	u(M2)

	2
	-3
	3
	1
	0
	-1
	28.4807968
	Na2
	1
	0

	2
	-3
	4
	-1
	0
	0
	28.5125831
	(2
	f(M2)
	u(M2)

	2
	-2
	0
	0
	0
	0
	28.9019669
	OP2
	f(O1)
	u(O1)

	2
	-2
	1
	0
	0
	0
	28.9430356
	MA2
	See B.
	See B.

	2
	-2
	2
	0
	0
	0
	28.9841042
	M2
	1.0004-0.0373*cos N + 0.0002*cos 2N
	0.0374*sin N 

	2
	-2
	3
	0
	0
	0
	29.0251729
	Ma2
	1
	0

	2
	-2
	4
	0
	0
	0
	29.0662415
	MKS2
	f(M2)*f(K2)
	u(M2)+u(K2)

	2
	-1
	0
	1
	0
	0
	29.4556253
	(2
	f(M2)
	u(M2)

	2
	-1
	2
	-1
	0
	0
	29.5284789
	L2
	See C. 
	See C.

	2
	0
	-2
	0
	0
	0
	29.9178627
	2SK2
	f(K2)
	u(K2)

	2
	0
	-1
	0
	0
	1
	29.9589333
	T2
	1
	0

	2
	0
	0
	0
	0
	0
	30.0
	S2
	1
	0

	2
	0
	1
	0
	0
	0
	30.0410667
	R2
	1
	0

	2
	0
	2
	0
	0
	0
	30.0821373
	K2
	1.0241+0.2863*cos N + 0.0083*cos 2N -0.0015*cos 3N 
	-0.3096*sin N + 0.0119 * sin 2N –0.0007*sin 3N 

	2
	1
	-2
	1
	0
	0
	30.4715211
	MSv2
	1
	0

	2
	1
	0
	-1
	0
	0
	30.5443747
	MSN2
	f(M2)2
	2*u(M2)

	2
	1
	2
	-1
	0
	0
	30.6265120
	KJ2
	f(K1)*f(J1)
	u(K1)+u(J1)

	2
	2
	-2
	0
	0
	0
	31.0158958
	2SM2
	f(M2)
	u(M2)

	2
	2
	0
	-2
	0
	0
	31.0887494
	2MS2N2
	f(M4)2
	0

	2
	2
	0
	0
	0
	0
	31.0980331
	SKM2
	f(M2)*f(K2)
	u(M2)+u(K2)

	3
	-5
	3
	1
	0
	0
	42.3827651
	N03
	f(M2)*f(O1)
	u(M2)*f(O1)

	3
	-4
	3
	0
	0
	0
	42.9271398
	M03
	f(M2)*f(O1)
	u(M2)*f(O1)

	3
	-4
	5
	0
	0
	0
	43.0092771
	2MP3
	f(M2)2
	2*u(M2)

	3
	-3
	3
	0
	0
	0
	43.4761563
	M3
	f(M2)1.5
	1.5*u(M2)

	3
	-2
	1
	0
	0
	0
	43.9430356
	S03
	f(O1)
	u(O1)

	3
	-2
	3
	0
	0
	0
	44.0251729
	MK3
	f(M2)*f(K1)
	u(M2)+u(K1)

	3
	-1
	3
	-1
	0
	0
	44.5695475
	2MQ3
	f(M4)*f(O1)
	u(M4)-u(O1)

	3
	0
	-1
	0
	0
	0
	44.9589314
	SP3
	f(M2)2
	2*u(M2)

	3
	0
	0
	0
	0
	0
	45.0
	S3
	1
	0

	3
	0
	1
	0
	0
	0
	45.0410686
	SK3
	f(K1)
	u(K1)

	4
	-7
	6
	1
	0
	0
	56.4079380
	2MNS4
	f(M4)*f(M2)
	u(M4)+u(M2)

	4
	-6
	4
	0
	0
	0
	56.8701754
	3MK4
	f(M6)*f(K2)
	u(M6)-u(K2)

	4
	-6
	6
	0
	0
	0
	56.9523127
	3MS4
	f(M6)
	u(M6)

	4
	-5
	4
	1
	0
	0
	57.4238337
	MN4
	f(M2)2
	2*u(M2)

	4
	-5
	6
	-1
	0
	0
	57.4966873
	M(4
	f(M2)2
	2*u(M2)

	4
	-4
	2
	0
	0
	0
	57.8860712
	2MSK4
	f(M4) *f(K2)
	u(M4) –u(K2)

	4
	-4
	4
	0
	0
	0
	57.9682084
	M4
	f(M2)2
	2*u(M2)

	4
	-3
	2
	1
	0
	0
	58.4397295
	SN4
	f(M2)
	u(M2)

	4
	-3
	4
	-1
	0
	0
	58.5125831
	ML4
	f(M2) *f(L2)
	u(M2) +u(L2)

	4
	-2
	2
	0
	0
	0
	58.9841042
	MS4
	f(M2)
	u(M2)

	4
	-2
	4
	0
	0
	0
	59.0662415
	MK4
	f(M2) *f(K2)
	u(M2) + u(K2)

	4
	-1
	2
	-1
	0
	0
	59.5284789
	2MSN4
	f(M4)*f(M2)
	u(M4)+u(M2)

	4
	0
	0
	0
	0
	0
	60.0
	S4
	1
	0

	4
	0
	2
	0
	0
	0
	60.0821373
	SK4
	f(K2)
	u(K2)

	5
	-6
	5
	0
	0
	0
	71.9112473
	3MK5
	f(M6)*f(K1)
	u(M6)-u(K1)

	5
	-5
	5
	0
	0
	0
	72.4602585
	M5
	0.5*(f(M2)2+f(M2)3)
	2.5*u(M2). If u(M2) > , subtract 5

	5
	-4
	3
	0
	0
	0
	72.9271393
	MSO5
	f(M6)*f(K1)
	u(M2) + u(K2)

	5
	-4
	5
	0
	0
	0
	73.0092773
	3MO5
	f(M2)*f(O1)
	u(M2)+u(O1)

	5
	-2
	3
	0
	0
	0
	74.0251694
	MSK5
	f(M2)*f(K1)
	u(M2)+u(K1)

	6
	-10
	8
	2
	0
	0
	84.8476675
	2(MN)S6
	f(M4)2
	2*u(M2)

	6
	-9
	8
	1
	0
	0
	85.3920422
	3MNS6
	f(M4)2
	2*u(M2)

	6
	-8
	6
	0
	0
	0
	85.8542796
	4MK6
	f(M4)2*f(K2)
	2*u(M2)-u(K2)

	6
	-8
	8
	0
	0
	0
	85.9364169
	4MS6
	f(M4)2
	2*u(M2)

	6
	-7
	4
	1
	0
	0
	86.3258007
	2MSNK6
	f(M6)*f(K2)
	u(M6)-u(K2)

	6
	-7
	6
	1
	0
	0
	86.4079380
	2MN6
	f(M4)*f(M2)
	u(M4)+u(M2)

	6
	-7
	8
	-1
	0
	0
	86.4807916
	2M(6
	f(M6)
	u(M6)

	6
	-6
	4
	0
	0
	0
	86.8701754
	3MSK6
	f(M6)*f(K2)
	u(M6)-u(K2)

	6
	-6
	6
	0
	0
	0
	86.9523127
	M6
	f(M4) * f(M2)
	u(M4) +u(M2)

	6
	-5
	4
	1
	0
	0
	87.4238337
	MSN6
	f(M2)2
	u(M2)

	6
	-5
	6
	-1
	0
	0
	87.4966873
	4MN6
	f(M6) f(M4)
	u(M6)

	6
	-4
	4
	0
	0
	0
	87.9682084
	2MS6
	f(M2)2
	2 * u(M2)

	6
	-4
	6
	0
	0
	0
	88.0503457
	2MK6
	f(M4) * f(M2)
	u(M4) + u(M2)

	6
	-3
	4
	-1
	0
	0
	88.5125831
	3MSN6
	f(M4)2
	2 * u(M2)

	6
	-3
	6
	-1
	0
	0
	88.5947204
	MKL6
	f(MK4) * f(L2)
	u(MK4)+u(L2)

	6
	-2
	2
	0
	0
	0
	88.9841042
	2SM6
	f(M2)
	u(M2)

	6
	-2
	4
	0
	0
	0
	89.0662415
	MSK6
	f(M2) *f(K2)
	f(M2) + f(K2)

	8
	-10
	8
	2
	0
	0
	114.8476639
	2(MN)8
	f(M2)4
	4*u(M2)

	8
	-9
	8
	1
	0
	0
	115.3920441
	3MN8
	f(M2)4
	4*u(M2)

	8
	-8
	8
	0
	0
	0
	115.9364166
	M8
	f(M2)4
	4*u(M2)

	8
	-7
	6
	1
	0
	0
	116.4079361
	2MSN8
	f(M6)
	u(M6)

	8
	-6
	6
	0
	0
	0
	116.9523163
	3MS8
	f(M6)
	u(M6)

	8
	-6
	8
	0
	0
	0
	117.0344467
	3MK8
	f(M6)*f(K2)
	u(M6)+u(K2)

	8
	-5
	6
	1
	0
	0
	117.5059738
	MSNK8
	f(M4)*f(K2)
	u(M4)+u(K2)

	8
	-4
	4
	0
	0
	0
	117.9682083
	2(MS)8
	f(M4)
	u(M4)

	8
	-4
	6
	0
	0
	0
	118.0503464
	2MSK8
	f(M4)*f(K2)
	u(M4)+u(K2)

	10
	-8
	8
	0
	0
	0
	145.9364166
	4MS10
	f(M2)4
	4*u(M2)

	10
	-6
	6
	0
	0
	0
	146.9523163
	3M2S10
	f(M6)
	u(M6)

	12
	-11
	10
	1
	0
	0
	174.3761444
	4MSN12
	f(M6) * f(M4)
	5*u(M2)

	12
	-10
	10
	0
	0
	0
	174.9205170
	5MS12
	f(M6) * f(M4)
	5*u(M2)

	12
	-8
	8
	0
	0
	0
	175.9364166
	4M2S12
	f(M2)4
	4*u(M2)


Notes

The nodal corrections for M1, MA2, and L2 involve both N (the longitude of the moon's ascending node) and p (the longitude of the moon's perigee), thus making the formulas too lengthy for the table (but see below). Formulas for N and p may be found under "Longitude formulas". 

A.  For M1:
c = 2.0*cos p + 0.4*cos(p - N)

s = sin p + 0.2*sin(p- N).

f = (c2+s2)1/2

u = arctan(s/c)   (If c < 0, then add 

B. For MA2:

c = 1.0+0.130*cos N
s = -0.130*sin N 

f = (c2+s2)1/2

u = arctan(s/c)   (If c < 0, then add 
C. For L2:

c=1.0 - 0.2505*cos(2p) - 0.1102*cos(2p - N) - 0.0156*cos(2p -2 N) - 0.037*cos N;

s = -0.2505*sin(2p) - 0.1102*sin(2p - N) - 0.0156*sin(2p -2 N) - 0.037*sin(N). 

f = (c2+s2)1/2

u = arctan(s/c)   (If c < 0, then add 
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The Dakshineswar temple, near Calcutta, is dedicated to Kali, who rules the tides. Dakshineswar was made famous as the long-time dwelling-place of the Bengali mystic, Ramakrishna. Photo credit: Martin Gray, Geomancy Foundation, USA (www.sacredsites.com).
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